Featured Publications
Resistance Mechanisms to Anti-PD Cancer Immunotherapy
Vesely MD, Zhang T, Chen L. Resistance Mechanisms to Anti-PD Cancer Immunotherapy. Annual Review Of Immunology 2022, 40: 45-74. PMID: 35471840, DOI: 10.1146/annurev-immunol-070621-030155.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsAnti-PD therapyCancer immunotherapyMechanisms of resistanceImmune inhibitory moleculesFraction of patientsResistance mechanismsNormalization cancer immunotherapyAdditional immunotherapyPD-1Clinical evidenceAntigen presentationT cellsSolid tumorsTherapy resistanceH1 pathwayTumor microenvironmentImmunotherapyInhibitory moleculesHematopoietic malignanciesCancer treatmentTherapyPatientsCurrent studyCancer dataMalignancyThe CD8α–PILRα interaction maintains CD8+ T cell quiescence
Zheng L, Han X, Yao S, Zhu Y, Klement J, Wu S, Ji L, Zhu G, Cheng X, Tobiasova Z, Yu W, Huang B, Vesely MD, Wang J, Zhang J, Quinlan E, Chen L. The CD8α–PILRα interaction maintains CD8+ T cell quiescence. Science 2022, 376: 996-1001. PMID: 35617401, DOI: 10.1126/science.aaz8658.Peer-Reviewed Original ResearchConceptsT cell quiescenceT cellsT cell pool sizeMaintenance of CD8Peripheral lymphoid organsCell quiescenceMemory CD8Antigen exposureLymphoid organsActivation phenotypeCD8Specific antigenCD8αInducible deletionCell pool sizeDiverse antigensAntigenMolecular mechanismsBroad repertoireExposureCellsQuiescent stateTumorsMicePILRαPD-1H (VISTA)–mediated suppression of autoimmunity in systemic and cutaneous lupus erythematosus
Han X, Vesely MD, Yang W, Sanmamed MF, Badri T, Alawa J, López-Giráldez F, Gaule P, Lee SW, Zhang JP, Nie X, Nassar A, Boto A, Flies DB, Zheng L, Kim TK, Moeckel GW, McNiff JM, Chen L. PD-1H (VISTA)–mediated suppression of autoimmunity in systemic and cutaneous lupus erythematosus. Science Translational Medicine 2019, 11 PMID: 31826980, DOI: 10.1126/scitranslmed.aax1159.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsArthritisAutoantibodiesAutoimmunityDendritic CellsHumansInflammationInterferon Type ILupus Erythematosus, CutaneousLupus Erythematosus, SystemicMembrane ProteinsMice, Inbred BALB CMice, Inbred MRL lprMyeloid CellsNeutrophilsReceptors, Antigen, T-CellSignal TransductionTerpenesUp-RegulationConceptsPlasmacytoid dendritic cellsDiscoid lupus erythematosusSystemic lupus erythematosusCutaneous lupus lesionsPD-1HLupus erythematosusLupus lesionsAutoimmune diseasesKO miceT cellsMyeloid cellsHuman systemic lupus erythematosusBALB/c backgroundCutaneous lupus erythematosusInappropriate immune responseProgression of lupusSystemic autoimmune diseaseImmune cell expansionSuppression of autoimmunityAgonistic monoclonal antibodyDeath-1 homologCutaneous lupusProinflammatory neutrophilsDendritic cellsDLE lesions
2024
Up-regulated PLA2G10 in cancer impairs T cell infiltration to dampen immunity
Zhang T, Yu W, Cheng X, Yeung J, Ahumada V, Norris P, Pearson M, Yang X, van Deursen W, Halcovich C, Nassar A, Vesely M, Zhang Y, Zhang J, Ji L, Flies D, Liu L, Langermann S, LaRochelle W, Humphrey R, Zhao D, Zhang Q, Zhang J, Gu R, Schalper K, Sanmamed M, Chen L. Up-regulated PLA2G10 in cancer impairs T cell infiltration to dampen immunity. Science Immunology 2024, 9: eadh2334. PMID: 38669316, DOI: 10.1126/sciimmunol.adh2334.Peer-Reviewed Original ResearchConceptsT cell infiltrationT cell exclusionT cellsResistance to anti-PD-1 immunotherapyPoor T-cell infiltrationAnti-PD-1 immunotherapyImmunogenic mouse tumorsT cell mobilizationHuman cancer tissuesTherapeutic immunotherapyCancer immunotherapyMouse tumorsChemokine systemImmunotherapyTumor tissuesImpaired infiltrationTumorLipid metabolitesHuman cancersCancer tissuesInfiltrationA2 groupCancerPLA2G10Up-regulated
2023
Crusted Scabies Presenting as Erythroderma in a Patient With Iatrogenic Immunosuppression for Treatment of Granulomatosis With Polyangiitis.
Olamiju B, Leventhal J, Vesely M. Crusted Scabies Presenting as Erythroderma in a Patient With Iatrogenic Immunosuppression for Treatment of Granulomatosis With Polyangiitis. Cutis 2023, 111: e44-e47. PMID: 37406327, DOI: 10.12788/cutis.0794.Peer-Reviewed Original ResearchConceptsCrusted scabiesMedication-induced immunosuppressionTreatment of granulomatosisBone marrow transplantationDiagnosis of scabiesVar hominisIatrogenic immunosuppressionBroad differentialMarrow transplantationAutoimmune diseasesSolid organsRare caseSevere formPatientsImmunosuppressionErythrodermaScabiesInfectionEctoparasitic infectionsPolyangiitisGranulomatosisTreatmentMyelosuppressionTransplantationDisease
2021
Targeting the CSF1/CSF1R axis is a potential treatment strategy for malignant meningiomas
Yeung J, Yaghoobi V, Miyagishima D, Vesely MD, Zhang T, Badri T, Nassar A, Han X, Sanmamed MF, Youngblood M, Peyre M, Kalamarides M, Rimm DL, Gunel M, Chen L. Targeting the CSF1/CSF1R axis is a potential treatment strategy for malignant meningiomas. Neuro-Oncology 2021, 23: 1922-1935. PMID: 33914067, PMCID: PMC8563319, DOI: 10.1093/neuonc/noab075.Peer-Reviewed Original ResearchConceptsColony-stimulating factor-1Myeloid cellsMalignant meningiomasTumor microenvironmentCSF1/CSF1RRNA-seqRNA sequencingHuman meningiomasImmune subsetsGene expressionT cellsTreatment strategiesNormalization cancer immunotherapyImportant regulatorCell typesNovel immunocompetent murine modelDeath ligand 1 (PD-L1) expressionCell death receptor-1Immunosuppressive myeloid cellsDeath receptor-1Ligand 1 expressionFactor 1Immune cell typesImmunocompetent murine modelEffective treatment strategiesA Burned-Out CD8+ T-cell Subset Expands in the Tumor Microenvironment and Curbs Cancer Immunotherapy
Sanmamed MF, Nie X, Desai SS, Villaroel-Espindola F, Badri T, Zhao D, Kim AW, Ji L, Zhang T, Quinlan E, Cheng X, Han X, Vesely MD, Nassar AF, Sun J, Zhang Y, Kim TK, Wang J, Melero I, Herbst RS, Schalper KA, Chen L. A Burned-Out CD8+ T-cell Subset Expands in the Tumor Microenvironment and Curbs Cancer Immunotherapy. Cancer Discovery 2021, 11: 1700-1715. PMID: 33658301, PMCID: PMC9421941, DOI: 10.1158/2159-8290.cd-20-0962.Peer-Reviewed Original ResearchConceptsNon-small cell lung cancerTumor-infiltrating lymphocytesExhausted T cellsTIL subsetsTumor microenvironmentCancer immunotherapyT cellsAdvanced non-small cell lung cancerPatient-derived tumor xenograft modelAnti-PD therapyT cell subsetsCell lung cancerPotential tissue biomarkersBaseline tumor tissueLung cancer tissuesSingle-cell mass cytometryTumor xenograft modelApoptotic CD8Dysfunctional CD8Immunotherapy resistancePD-1Activation markersAdjacent nontumoral tissuesPathway-dependent mannerLung cancer
2018
Chapter One Stimulating T Cells Against Cancer With Agonist Immunostimulatory Monoclonal Antibodies
Han X, Vesely MD. Chapter One Stimulating T Cells Against Cancer With Agonist Immunostimulatory Monoclonal Antibodies. International Review Of Cytology 2018, 342: 1-25. PMID: 30635089, PMCID: PMC6487201, DOI: 10.1016/bs.ircmb.2018.07.003.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsT cellsT-lymphocyte antigen-4Monoclonal antibodiesInhibitory T cell receptorsCostimulatory receptor CD137Immunostimulatory monoclonal antibodiesUse of immunotherapeuticsT cell receptorAntitumor immunityDeath-1Antigen-4Immune surveillanceAgonist antibodyCostimulatory receptorsF. Macfarlane BurnetCancer cellsAntibodiesCancerReceptorsMacfarlane BurnetCellsGITRCD137CD27OX40
2014
Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens
Gubin MM, Zhang X, Schuster H, Caron E, Ward JP, Noguchi T, Ivanova Y, Hundal J, Arthur CD, Krebber WJ, Mulder GE, Toebes M, Vesely MD, Lam SS, Korman AJ, Allison JP, Freeman GJ, Sharpe AH, Pearce EL, Schumacher TN, Aebersold R, Rammensee HG, Melief CJ, Mardis ER, Gillanders WE, Artyomov MN, Schreiber RD. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature 2014, 515: 577-581. PMID: 25428507, PMCID: PMC4279952, DOI: 10.1038/nature13988.Peer-Reviewed Original Research
2013
Cancer immunoediting: antigens, mechanisms, and implications to cancer immunotherapy
Vesely MD, Schreiber RD. Cancer immunoediting: antigens, mechanisms, and implications to cancer immunotherapy. Annals Of The New York Academy Of Sciences 2013, 1284: 1-5. PMID: 23651186, PMCID: PMC3648872, DOI: 10.1111/nyas.12105.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsImmune systemTumor-specific antigensHuman cancer patientsTumor-promoting actionsNascent tumor cellsAntitumor immunityTumor immunityCancer immunosurveillanceChronic inflammationPersonalized cancer therapyImmunogenic variantsCancer immunotherapyCancer patientsCancer immunoeditingT cellsAnimal modelsTumor variantsTumor progressionTumor cellsCancer cellsImmunityCancer therapyCancerAntigenImmunoselection
2012
Opposing Roles for IL-23 and IL-12 in Maintaining Occult Cancer in an Equilibrium State
Teng MW, Vesely MD, Duret H, McLaughlin N, Towne JE, Schreiber RD, Smyth MJ. Opposing Roles for IL-23 and IL-12 in Maintaining Occult Cancer in an Equilibrium State. Cancer Research 2012, 72: 3987-3996. PMID: 22869585, PMCID: PMC4384890, DOI: 10.1158/0008-5472.can-12-1337.Peer-Reviewed Original ResearchConceptsIL-12IL-23Antibody treatmentImmune systemCD40 antibody treatmentIL‐12/23p40 antibodiesAutoimmune inflammatory disorderMonoclonal antibody treatmentOccult neoplasiaOccult cancerIL-17IL-23p19IL-12/23p40Immune controlInflammatory disordersTumor immunogenicityIL-4Malignant potentialCancer immunoeditingTumor outgrowthElimination phaseTumor growthTumor dormancyMutant cancersCancer cellsCancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting
Matsushita H, Vesely MD, Koboldt DC, Rickert CG, Uppaluri R, Magrini VJ, Arthur CD, White JM, Chen YS, Shea LK, Hundal J, Wendl MC, Demeter R, Wylie T, Allison JP, Smyth MJ, Old LJ, Mardis ER, Schreiber RD. Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature 2012, 482: 400-404. PMID: 22318521, PMCID: PMC3874809, DOI: 10.1038/nature10755.Peer-Reviewed Original Research
2011
Natural Innate and Adaptive Immunity to Cancer
Vesely MD, Kershaw MH, Schreiber RD, Smyth MJ. Natural Innate and Adaptive Immunity to Cancer. Annual Review Of Immunology 2011, 29: 235-271. PMID: 21219185, DOI: 10.1146/annurev-immunol-031210-101324.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsImmune systemAdaptive immune cell typesImmune cell typesTumor-promoting actionsHuman clinical dataNascent tumor cellsCancer immunosurveillanceClinical dataAdaptive immunityMouse modelTumor progressionCancerTumor cellsTumor suppressor mechanismImmunityEffector moleculesFurther studiesCell typesCompelling evidenceImportant defenseImmunotherapyImmunosurveillanceInnateProgression
2008
Demonstration of inflammation-induced cancer and cancer immunoediting during primary tumorigenesis
Swann JB, Vesely MD, Silva A, Sharkey J, Akira S, Schreiber RD, Smyth MJ. Demonstration of inflammation-induced cancer and cancer immunoediting during primary tumorigenesis. Proceedings Of The National Academy Of Sciences Of The United States Of America 2008, 105: 652-656. PMID: 18178624, PMCID: PMC2206591, DOI: 10.1073/pnas.0708594105.Peer-Reviewed Original ResearchConceptsCancer immunoeditingWT controlsAdaptor myeloid differentiation factor 88Myeloid differentiation factor 88Adaptive immune surveillanceMyD88-/- miceMyD88-deficient miceRole of TNFDMBA/TPAInflammation-induced cancerDistinct mouse modelsTNF-deficient miceInflammation-induced carcinogenesisO-tetradecanoylphorbol 13Mouse tumor modelsFactor 88WT miceChronic inflammationMCA sarcomaProinflammatory processesTumor immunologistsImmune surveillanceMouse modelSkin papillomasPrimary tumorigenesis
2001
Evidence for an Atrial Natriuretic Peptide–-Like Gene in Plants
Vesely M, Gower W, Perez-Lamboy G, Overton R, Graddy L, Vesely D. Evidence for an Atrial Natriuretic Peptide–-Like Gene in Plants. Experimental Biology And Medicine 2001, 226: 61-65. PMID: 11368240, DOI: 10.1177/153537020122600109.Peer-Reviewed Original ResearchConceptsGene sequencesTotal plant RNAAtrial natriuretic-like peptidesNorthern blot analysisPlant RNAAnimal kingdomGene expressionGenomic DNAPeptide genesSouthern blotNorthern blotGenesPlantsEnglish ivyBlot analysisLeavesTotal RNAHormonal systemsRNANatriuretic peptide geneSequenceExpressionBlotRootsAtrial natriuretic peptide gene
1999
Environmental Upregulation of the Atrial Natriuretic Peptide Gene in the Living Fossil,Limulus polyphemus
Vesely M, Vesely D. Environmental Upregulation of the Atrial Natriuretic Peptide Gene in the Living Fossil,Limulus polyphemus. Biochemical And Biophysical Research Communications 1999, 254: 751-756. PMID: 9920813, DOI: 10.1006/bbrc.1998.9990.Peer-Reviewed Original ResearchConceptsGene expressionLimulus polyphemusNorthern blot analysisLow salinityVertebrate heartLiving fossilPeptide genesMessenger RNAHorseshoe crabsPeptide gene expressionBlot analysisANP gene expressionFreshwaterMedium salinityGillsExpressionSalinityAtrial natriuretic peptide gene expressionNatriuretic peptide genePolyphemusAtrial natriuretic peptide geneGenesRNACrabsFossils