2014
Sac1–Vps74 structure reveals a mechanism to terminate phosphoinositide signaling in the Golgi apparatus
Cai Y, Deng Y, Horenkamp F, Reinisch KM, Burd CG. Sac1–Vps74 structure reveals a mechanism to terminate phosphoinositide signaling in the Golgi apparatus. Journal Of Cell Biology 2014, 206: 485-491. PMID: 25113029, PMCID: PMC4137058, DOI: 10.1083/jcb.201404041.Peer-Reviewed Original ResearchMeSH KeywordsCarrier ProteinsCatalysisCrystallography, X-RayEndoplasmic ReticulumGolgi ApparatusGreen Fluorescent ProteinsMembrane ProteinsModels, MolecularMultiprotein ComplexesPhosphatidylinositol PhosphatesPhosphoric Monoester HydrolasesProtein BindingProtein Structure, TertiarySaccharomyces cerevisiaeSaccharomyces cerevisiae ProteinsConceptsGolgi apparatusHomology domainRegulation of phosphatidylinositolN-terminal subdomainN-terminal portionPhosphoinositide phosphataseFamily proteinsSignal terminationEndoplasmic reticulumPhosphatidylinositolMembrane compositionSAC1Dual functionPhosphoinositideEffectorsPhosphataseAmyotrophic lateral sclerosisCharcot-MarieBroad distributionVps74OrthologuesTooth disordersGOLPH3MannosyltransferaseLateral sclerosisStructure of a lipid-bound extended synaptotagmin indicates a role in lipid transfer
Schauder CM, Wu X, Saheki Y, Narayanaswamy P, Torta F, Wenk MR, De Camilli P, Reinisch KM. Structure of a lipid-bound extended synaptotagmin indicates a role in lipid transfer. Nature 2014, 510: 552-555. PMID: 24847877, PMCID: PMC4135724, DOI: 10.1038/nature13269.Peer-Reviewed Original ResearchDiversity and plasticity in Rab GTPase nucleotide release mechanism has consequences for Rab activation and inactivation
Langemeyer L, Bastos R, Cai Y, Itzen A, Reinisch KM, Barr FA. Diversity and plasticity in Rab GTPase nucleotide release mechanism has consequences for Rab activation and inactivation. ELife 2014, 3: e01623. PMID: 24520163, PMCID: PMC3919270, DOI: 10.7554/elife.01623.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphateAspartic AcidBacterial ProteinsCatalytic DomainDeath Domain Receptor Signaling Adaptor ProteinsDNA-Binding ProteinsEnzyme ActivationGlutamineGuanine Nucleotide Exchange FactorsHeLa CellsHumansHydrolysisListeriaModels, MolecularMutagenesis, Site-DirectedMutationProtein ConformationRab GTP-Binding ProteinsRab1 GTP-Binding ProteinsRab5 GTP-Binding ProteinsSignal TransductionTransfectionConceptsActive site residuesGTP hydrolysis mechanismNucleotide-free formActive site glutamineSwitch II regionDifferent RabsRab activationRab GTPasesGTPase activationGlutamine mutantNucleotide exchangeGDP releaseRabActivation mechanismActivation pathwayActive formPathwayResiduesActivationII regionRAPlasticityGTPasesRab5GEF
2013
The EM structure of the TRAPPIII complex leads to the identification of a requirement for COPII vesicles on the macroautophagy pathway
Tan D, Cai Y, Wang J, Zhang J, Menon S, Chou HT, Ferro-Novick S, Reinisch KM, Walz T. The EM structure of the TRAPPIII complex leads to the identification of a requirement for COPII vesicles on the macroautophagy pathway. Proceedings Of The National Academy Of Sciences Of The United States Of America 2013, 110: 19432-19437. PMID: 24218626, PMCID: PMC3845172, DOI: 10.1073/pnas.1316356110.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAutophagyChlorocebus aethiopsChromatography, GelCloning, MolecularCOP-Coated VesiclesCOS CellsElectroporationEscherichia coliImage Processing, Computer-AssistedMicroscopy, ElectronMicroscopy, FluorescenceModels, MolecularProtein ConformationSaccharomyces cerevisiaeSaccharomyces cerevisiae ProteinsVesicular Transport ProteinsConceptsPhagophore assembly siteCOPII vesiclesAssembly sitesRab GTPase Ypt1Electron microscopy structureTargeting of ERTRAPPIII complexFusion machineryMicroscopy structureCOPII coatMacroautophagy pathwayExchange factorSubunit associatesMembrane sourceEM structuresAcceptor compartmentTRAPPIIITRAPPIVesiclesMacroautophagyTrs85COPIISec23Ypt1Mammals
2011
A conformational switch in complexin is required for synaptotagmin to trigger synaptic fusion
Krishnakumar SS, Radoff DT, Kümmel D, Giraudo CG, Li F, Khandan L, Baguley SW, Coleman J, Reinisch KM, Pincet F, Rothman JE. A conformational switch in complexin is required for synaptotagmin to trigger synaptic fusion. Nature Structural & Molecular Biology 2011, 18: 934-940. PMID: 21785412, PMCID: PMC3668341, DOI: 10.1038/nsmb.2103.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Vesicular TransportAmino Acid SequenceAnimalsBinding SitesCrystallography, X-RayHumansMembrane FusionModels, MolecularMolecular Sequence DataMutagenesis, Site-DirectedNerve Tissue ProteinsProtein Structure, TertiaryRatsSynaptosomal-Associated Protein 25SynaptotagminsSyntaxin 1Vesicle-Associated Membrane Protein 2
2010
Structure and function of the polymerase core of TRAMP, a RNA surveillance complex
Hamill S, Wolin SL, Reinisch KM. Structure and function of the polymerase core of TRAMP, a RNA surveillance complex. Proceedings Of The National Academy Of Sciences Of The United States Of America 2010, 107: 15045-15050. PMID: 20696927, PMCID: PMC2930566, DOI: 10.1073/pnas.1003505107.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Signal TransducingAmino Acid SequenceBase SequenceBinding SitesCrystallography, X-RayDNA-Directed DNA PolymeraseModels, MolecularMolecular Sequence DataMultiprotein ComplexesProtein Interaction Domains and MotifsRecombinant ProteinsRNA, FungalSaccharomyces cerevisiaeSaccharomyces cerevisiae ProteinsSequence Homology, Amino AcidStatic ElectricitySubstrate SpecificityConceptsZinc knuckle motifHigher eukaryotesSubstrate recognitionRNA polymeraseCentral domainInitial substrate recognitionRNA 3' endsTRAMP complexRNA surveillanceZinc knuckleCharacterized enzymesAberrant RNAsSurveillance complexPolymerase coreRNA bindingAir2pNucleotidyl transferaseTrf4pN-terminusEukaryotesInteraction surfacePolymeraseMotifNucleic acidsComplexes
2009
Insights into MHC Class I Peptide Loading from the Structure of the Tapasin-ERp57 Thiol Oxidoreductase Heterodimer
Dong G, Wearsch PA, Peaper DR, Cresswell P, Reinisch KM. Insights into MHC Class I Peptide Loading from the Structure of the Tapasin-ERp57 Thiol Oxidoreductase Heterodimer. Immunity 2009, 30: 21-32. PMID: 19119025, PMCID: PMC2650231, DOI: 10.1016/j.immuni.2008.10.018.Peer-Reviewed Original Research
2008
The Structural Basis for Activation of the Rab Ypt1p by the TRAPP Membrane-Tethering Complexes
Cai Y, Chin HF, Lazarova D, Menon S, Fu C, Cai H, Sclafani A, Rodgers DW, De La Cruz EM, Ferro-Novick S, Reinisch KM. The Structural Basis for Activation of the Rab Ypt1p by the TRAPP Membrane-Tethering Complexes. Cell 2008, 133: 1202-1213. PMID: 18585354, PMCID: PMC2465810, DOI: 10.1016/j.cell.2008.04.049.Peer-Reviewed Original Research
2007
A Catalytic Coiled Coil: Structural Insights into the Activation of the Rab GTPase Sec4p by Sec2p
Dong G, Medkova M, Novick P, Reinisch KM. A Catalytic Coiled Coil: Structural Insights into the Activation of the Rab GTPase Sec4p by Sec2p. Molecular Cell 2007, 25: 455-462. PMID: 17289591, PMCID: PMC1847580, DOI: 10.1016/j.molcel.2007.01.013.Peer-Reviewed Original ResearchAmino Acid MotifsBinding SitesBiological TransportCrystallography, X-RayEnzyme ActivationGTP-Binding ProteinsGuanine Nucleotide Exchange FactorsModels, MolecularMolecular Sequence DataNucleotidesProtein Structure, TertiaryRab GTP-Binding ProteinsSaccharomyces cerevisiae ProteinsSequence AlignmentTransport Vesicles
2006
Structural and biochemical basis for misfolded RNA recognition by the Ro autoantigen
Fuchs G, Stein AJ, Fu C, Reinisch KM, Wolin SL. Structural and biochemical basis for misfolded RNA recognition by the Ro autoantigen. Nature Structural & Molecular Biology 2006, 13: 1002-1009. PMID: 17041599, DOI: 10.1038/nsmb1156.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAutoantigensBase SequenceBinding SitesCrystallography, X-RayModels, MolecularMolecular Sequence DataMutagenesisNuclease Protection AssaysNucleic Acid ConformationOocytesProtein BindingProtein Structure, TertiaryRibonucleoproteinsRNA 3' End ProcessingRNA PrecursorsRNA-Binding ProteinsRNA, Ribosomal, 5SXenopus laevis
2005
Structural Insights into RNA Quality Control: The Ro Autoantigen Binds Misfolded RNAs via Its Central Cavity
Stein AJ, Fuchs G, Fu C, Wolin SL, Reinisch KM. Structural Insights into RNA Quality Control: The Ro Autoantigen Binds Misfolded RNAs via Its Central Cavity. Cell 2005, 121: 529-539. PMID: 15907467, PMCID: PMC1769319, DOI: 10.1016/j.cell.2005.03.009.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid MotifsAmino Acid SequenceAnimalsBinding SitesCells, CulturedCrystallography, X-RayInsectaModels, MolecularMolecular Sequence DataNucleic Acid ConformationProtein BindingProtein Structure, TertiaryRibonucleoproteinsRNARNA Processing, Post-TranscriptionalRNA-Binding ProteinsRNA, Small CytoplasmicRNA, Small NuclearXenopus laevis
2004
Structure of the La motif: a winged helix domain mediates RNA binding via a conserved aromatic patch
Dong G, Chakshusmathi G, Wolin SL, Reinisch KM. Structure of the La motif: a winged helix domain mediates RNA binding via a conserved aromatic patch. The EMBO Journal 2004, 23: 1000-1007. PMID: 14976553, PMCID: PMC380972, DOI: 10.1038/sj.emboj.7600115.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid MotifsAmino Acid SequenceAnimalsAutoantigensConserved SequenceCrystallography, X-RayHelix-Turn-Helix MotifsHydroxylationModels, MolecularMolecular Sequence DataMutationPhosphatesProtein BindingProtein Structure, TertiaryRibonucleoproteinsRNASequence AlignmentSubstrate SpecificityTrypanosoma brucei bruceiConceptsLa motifLa proteinRNA polymerase III transcriptsFirst structural insightsRNA-binding proteinPolymerase III transcriptsHelix domainNuclear phosphoproteinRNA substratesMutagenesis experimentsStructural insightsConserved regionsHigh-affinity bindingAromatic patchHelix architectureProteinSurface residuesMotifRNAUridylateCritical roleTranscriptsPhosphoproteinExonucleaseFolding