2024
CBLs downregulation foretells T cell ubiquitination leading to autoimmunity
Vidyarthi A, Craft J. CBLs downregulation foretells T cell ubiquitination leading to autoimmunity. Cell Chemical Biology 2024, 31: 1239-1241. PMID: 39029453, DOI: 10.1016/j.chembiol.2024.06.010.Peer-Reviewed Original Research
2018
scFTD-seq: freeze-thaw lysis based, portable approach toward highly distributed single-cell 3′ mRNA profiling
Dura B, Choi JY, Zhang K, Damsky W, Thakral D, Bosenberg M, Craft J, Fan R. scFTD-seq: freeze-thaw lysis based, portable approach toward highly distributed single-cell 3′ mRNA profiling. Nucleic Acids Research 2018, 47: e16-e16. PMID: 30462277, PMCID: PMC6379653, DOI: 10.1093/nar/gky1173.Peer-Reviewed Original ResearchAnimalsCell LineFreezingGene Expression ProfilingHigh-Throughput Nucleotide SequencingHuman Umbilical Vein Endothelial CellsHumansLupus Erythematosus, SystemicMaleMelanoma, ExperimentalMiceOligonucleotide Array Sequence AnalysisRNA, MessengerSequence Analysis, RNASingle-Cell AnalysisT-LymphocytesWorkflow
2016
The TAM family receptor tyrosine kinase TYRO3 is a negative regulator of type 2 immunity
Chan PY, Carrera Silva EA, De Kouchkovsky D, Joannas LD, Hao L, Hu D, Huntsman S, Eng C, Licona-Limón P, Weinstein JS, Herbert DR, Craft JE, Flavell RA, Repetto S, Correale J, Burchard EG, Torgerson DG, Ghosh S, Rothlin CV. The TAM family receptor tyrosine kinase TYRO3 is a negative regulator of type 2 immunity. Science 2016, 352: 99-103. PMID: 27034374, PMCID: PMC4935984, DOI: 10.1126/science.aaf1358.Peer-Reviewed Original ResearchMeSH KeywordsAdaptive ImmunityAnimalsAsthmaBlood ProteinsDendritic CellsDisease Models, AnimalGene Knockout TechniquesHost-Parasite InteractionsHumansImmunity, InnateInterleukin-4MiceMice, Inbred C57BLMice, KnockoutNippostrongylusProtein SPyroglyphidaeReceptor Protein-Tyrosine KinasesStrongylida InfectionsT-LymphocytesConceptsType 2 immunityType 2 responsesType 2 cytokinesHuman dendritic cellsInnate immune cellsDendritic cellsAllergic diseasesImmune cellsT cellsAdaptive immunityInterleukin-4Host responseFunctional neutralizationGenetic ablationReceptor tyrosine kinasesImmunityProtective functionTyro3Tyrosine kinaseNegative regulatorPROS1CellsResponseCytokinesDisease
2014
B Cells in T Follicular Helper Cell Development and Function: Separable Roles in Delivery of ICOS Ligand and Antigen
Weinstein JS, Bertino SA, Hernandez SG, Poholek AC, Teplitzky TB, Nowyhed HN, Craft J. B Cells in T Follicular Helper Cell Development and Function: Separable Roles in Delivery of ICOS Ligand and Antigen. The Journal Of Immunology 2014, 192: 3166-3179. PMID: 24610013, PMCID: PMC3991608, DOI: 10.4049/jimmunol.1302617.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntigensAntigens, CD19B-LymphocytesCell ProliferationDNA-Binding ProteinsFlow CytometryInducible T-Cell Co-Stimulator LigandMiceMice, Inbred C57BLMice, KnockoutMice, TransgenicMicroscopy, ConfocalNitrophenolsOvalbuminPhenylacetatesProto-Oncogene Proteins c-bcl-6Reverse Transcriptase Polymerase Chain ReactionT-LymphocytesT-Lymphocytes, Helper-InducerConceptsCognate B cellsTfh cell developmentB cellsICOS ligandFollicular Th cell developmentCell developmentNoncognate B cellsFollicular helper cell developmentTfh cell differentiationAg-specific B cellsICOS-L expressionB cell expressionTh cell developmentGerminal center differentiationICOS blockadeTfh cellsAg deliverySystemic autoimmunityCell expressionCell maturationICOSCellsDeliveryCell differentiationCells display
2013
Nanogel-based delivery of mycophenolic acid ameliorates systemic lupus erythematosus in mice
Look M, Stern E, Wang QA, DiPlacido LD, Kashgarian M, Craft J, Fahmy TM. Nanogel-based delivery of mycophenolic acid ameliorates systemic lupus erythematosus in mice. Journal Of Clinical Investigation 2013, 123: 1741-1749. PMID: 23454752, PMCID: PMC3613921, DOI: 10.1172/jci65907.Peer-Reviewed Original ResearchConceptsSystemic lupus erythematosusMedian survival timeMycophenolic acidLupus erythematosusImmune cellsLupus-prone NZB/W F1 miceNZB/W F1 miceSimilar therapeutic resultsW F1 miceSevere renal damageCD4 T cellsAntigen-presenting cellsLupus therapyRenal damageIL-12Immunosuppressant mycophenolic acidInflammatory cytokinesProphylactic useTherapeutic resultsF1 miceT cellsSurvival timeGreater dosesErythematosusImmunosuppression
2012
The pathogenesis of systemic lupus erythematosus—an update
Choi J, Kim ST, Craft J. The pathogenesis of systemic lupus erythematosus—an update. Current Opinion In Immunology 2012, 24: 651-657. PMID: 23131610, PMCID: PMC3508331, DOI: 10.1016/j.coi.2012.10.004.Peer-Reviewed Original ResearchMeSH KeywordsAutoantibodiesAutoimmunityB-LymphocytesHumansImmunity, InnateLupus Erythematosus, SystemicT-LymphocytesConceptsSystemic lupus erythematosusLupus erythematosusAberrant adaptive immune responseAdaptive immune responsesDisease-specific therapeutic targetsInnate immune mechanismsPathogenic autoantibodiesImmune mechanismsTissue injuryImmune responseTherapeutic targetB cellsDisease mechanismsErythematosusClinical biologyRecent studiesAutoantibodiesLupusSLEPathogenesisInjury
2011
Systemic Autoimmunity and Lymphoproliferation Are Associated with Excess IL-7 and Inhibited by IL-7Rα Blockade
Gonzalez-Quintial R, Lawson BR, Scatizzi JC, Craft J, Kono DH, Baccala R, Theofilopoulos AN. Systemic Autoimmunity and Lymphoproliferation Are Associated with Excess IL-7 and Inhibited by IL-7Rα Blockade. PLOS ONE 2011, 6: e27528. PMID: 22102903, PMCID: PMC3213145, DOI: 10.1371/journal.pone.0027528.Peer-Reviewed Original ResearchConceptsT cellsIL-7Systemic autoimmunityIL-7R blockadeIL-7Rα blockadeAutoreactive T cellsMemory T cellsAdvanced disease stageProgression of autoimmunityFibroblastic reticular cellsNovel therapeutic approachesT cell activationAutoimmune manifestationsAutoimmune syndromeCommensal antigensDisease stageIL-7RαTherapeutic approachesLymphocyte homeostasisCell activationReticular cellsAutoimmunityMarked accumulationLupusBlockade
2007
Epigenetic and Transcriptional Programs Lead to Default IFN-γ Production by γδ T Cells
Chen L, He W, Kim ST, Tao J, Gao Y, Chi H, Intlekofer AM, Harvey B, Reiner SL, Yin Z, Flavell RA, Craft J. Epigenetic and Transcriptional Programs Lead to Default IFN-γ Production by γδ T Cells. The Journal Of Immunology 2007, 178: 2730-2736. PMID: 17312115, DOI: 10.4049/jimmunol.178.5.2730.Peer-Reviewed Original Research
2004
Resistance to Development of Collagen-Induced Arthritis in C57BL/6 Mice Is Due to a Defect in Secondary, but Not in Primary, Immune Response
Pan M, Kang I, Craft J, Yin Z. Resistance to Development of Collagen-Induced Arthritis in C57BL/6 Mice Is Due to a Defect in Secondary, but Not in Primary, Immune Response. Journal Of Clinical Immunology 2004, 24: 481-491. PMID: 15359107, DOI: 10.1023/b:joci.0000040919.16739.44.Peer-Reviewed Original ResearchConceptsCollagen-induced arthritisB6 miceImmune responseSimilar T cell proliferationBovine type II collagenB cell immune responsesH-2b backgroundAnti-CII antibodiesHuman rheumatoid arthritisT cell responsesCell immune responsesSecondary immune responseT cell proliferationCII AbsCytokine responsesRheumatoid arthritisInitial immunizationC57BL/6 miceRodent modelsArthritisType II collagenDay 14Cell responsesDay 12Mice
2003
Intrinsic T Cell Defects in Systemic Autoimmunity
KONG PL, ODEGARD JM, BOUZAHZAH F, CHOI J, EARDLEY LD, ZIELINSKI CE, CRAFT JE. Intrinsic T Cell Defects in Systemic Autoimmunity. Annals Of The New York Academy Of Sciences 2003, 987: 60-67. PMID: 12727624, DOI: 10.1111/j.1749-6632.2003.tb06033.x.Peer-Reviewed Original ResearchConceptsSystemic lupus erythematosusT cell defectsIntrinsic T cell defectCell defectsT cell toleranceLupus pathogenesisLupus erythematosusAutoimmune diseasesSystemic autoimmunityT cellsCell toleranceNuclear antigenGenetic causeLupusBiochemical natureErythematosusAutoimmunityPathogenesisAntigenDiseaseMice
2002
T-Bet Expression and Failure of GATA-3 Cross-Regulation Lead to Default Production of IFN-γ by γδ T Cells
Yin Z, Chen C, Szabo SJ, Glimcher LH, Ray A, Craft J. T-Bet Expression and Failure of GATA-3 Cross-Regulation Lead to Default Production of IFN-γ by γδ T Cells. The Journal Of Immunology 2002, 168: 1566-1571. PMID: 11823483, DOI: 10.4049/jimmunol.168.4.1566.Peer-Reviewed Original ResearchAnimalsCells, CulturedDNA-Binding ProteinsFlow CytometryGATA3 Transcription FactorInterferon-gammaInterleukin-12Interleukin-4Lymphocyte ActivationMiceMice, Inbred C57BLMicroscopy, ConfocalReceptors, Antigen, T-Cell, gamma-deltaRNA, MessengerT-Box Domain ProteinsT-LymphocytesTrans-ActivatorsTranscription FactorsTranscriptional ActivationTransfection
2001
From T to B and back again: positive feedback in systemic autoimmune disease
Shlomchik M, Craft J, Mamula M. From T to B and back again: positive feedback in systemic autoimmune disease. Nature Reviews Immunology 2001, 1: 147-153. PMID: 11905822, DOI: 10.1038/35100573.Peer-Reviewed Original ResearchConceptsSystemic autoimmune diseaseAutoimmune diseasesPrototypical systemic autoimmune diseaseSystemic lupus erythematosusPerpetuation of autoimmunityLoss of toleranceAutoantigen targetsLupus erythematosusAutoimmune stateB cellsImmune systemNuclear autoantigensDiseaseErythematosusAutoimmunityAutoantigens
1999
Autoreactive T cells in murine lupus
Craft J, Peng S, Fujii T, Okada M, Fatenejad S. Autoreactive T cells in murine lupus. Immunologic Research 1999, 19: 245-257. PMID: 10493178, DOI: 10.1007/bf02786492.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAutoantibodiesDisease Models, AnimalHumansLupus Erythematosus, SystemicMiceT-Lymphocytes
1998
Influence of antigen organization on the development of lupus autoantibodies
Fatenejad S, Bennett M, Moslehi J, Craft J. Influence of antigen organization on the development of lupus autoantibodies. Arthritis & Rheumatism 1998, 41: 603-612. PMID: 9550469, DOI: 10.1002/1529-0131(199804)41:4<603::aid-art7>3.0.co;2-e.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntibodiesAutoantibodiesAutoantigensGene ExpressionHeLa CellsHumansImmune ToleranceImmunizationLupus Erythematosus, SystemicMiceMice, Inbred C57BLMice, Inbred StrainsRecombinant Fusion ProteinsRecombinant ProteinsRibonucleoprotein, U1 Small NuclearRibonucleoproteins, Small NuclearRNA-Binding ProteinsT-LymphocytesTumor Cells, CulturedConceptsSystemic lupus erythematosusDevelopment of antibodiesH-2b backgroundDevelopment of lupusT cell responsesT cell toleranceAssessment of antibodiesNative snRNP particlesTypical immune responseLupus erythematosusAutoimmune responseNormal miceAntigen organizationImmune responseForeign immunogensH-2kCell toleranceMajor autoantigenCell responsesMiceRandom orderAntibodiesEukaryotic expression vectorLupusAutoantigens
1996
A tumor-suppressor function for Fas (CD95) revealed in T cell-deficient mice.
Peng SL, Robert ME, Hayday AC, Craft J. A tumor-suppressor function for Fas (CD95) revealed in T cell-deficient mice. Journal Of Experimental Medicine 1996, 184: 1149-1154. PMID: 9064331, PMCID: PMC2192794, DOI: 10.1084/jem.184.3.1149.Peer-Reviewed Original ResearchConceptsAlpha beta T cellsGamma delta T cellsBeta T cellsTumor suppressorDelta T cellsT cellsTumor suppressor functionCentral regulatory moleculeLethal B-cell lymphomaT cell-deficient miceB cell dysregulationCell-deficient miceRegulatory moleculesDevelopment of lymphomaB-cell lymphomaTumor regulationFas functionHematopoietic cellsFunctional FasRheumatoid factorCell dysregulationMalignant tumorsCell lymphomaIdentifies rolesImmunoglobulin MT cells in murine lupus: propagation and regulation of disease
Peng S, Craft J. T cells in murine lupus: propagation and regulation of disease. Molecular Biology Reports 1996, 23: 247-251. PMID: 9112236, DOI: 10.1007/bf00351176.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAutoimmunityDisease Models, AnimalImmunity, CellularLupus VulgarisMiceMice, Mutant StrainsT-LymphocytesConceptsΓδ T cellsΑβ T cellsT cellsLupus syndromeRenal diseaseMurine lupusCell helpMRL/lpr B cellsMRL/Mp-lpr/lpr miceImmune complex renal diseaseT cell-dependent mechanismLupus-prone MRL miceClass-switched autoantibodiesClass-switched immunoglobulinsSpecific autoimmune responseT-cell-deficient animalsCell-dependent mechanismB cell helpLpr B cellsT cell helpComplex renal diseaseB cell autoimmunityWild-type animalsPathogenesis of diseaseCause tissue injuryMurine lupus in the absence of alpha beta T cells.
Peng SL, Madaio MP, Hughes DP, Crispe IN, Owen MJ, Wen L, Hayday AC, Craft J. Murine lupus in the absence of alpha beta T cells. The Journal Of Immunology 1996, 156: 4041-9. PMID: 8621947, DOI: 10.4049/jimmunol.156.10.4041.Peer-Reviewed Original ResearchConceptsAlpha beta T cellsT cell-dependent mechanismBeta T cellsCell-dependent mechanismT cellsMurine lupusHuman systemic lupus erythematosusLupus-prone MRL miceSystemic lupus erythematosusSystemic autoimmune diseaseLupus erythematosusAutoimmune diseasesImmune depositsMRL miceAlpha betaLupusDiseaseMiceCellsErythematosusHypergammaglobulinemiaAutoantibodiesCD4AutoimmunityKidneyGerminal center formation, immunoglobulin class switching, and autoantibody production driven by "non alpha/beta" T cells.
Wen L, Pao W, Wong FS, Peng Q, Craft J, Zheng B, Kelsoe G, Dianda L, Owen MJ, Hayday AC. Germinal center formation, immunoglobulin class switching, and autoantibody production driven by "non alpha/beta" T cells. Journal Of Experimental Medicine 1996, 183: 2271-2282. PMID: 8642336, PMCID: PMC2192585, DOI: 10.1084/jem.183.5.2271.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAutoantibodiesClone CellsFlow CytometryGerminal CenterHumansImmunoglobulin Class SwitchingImmunoglobulin EImmunoglobulin GLupus Erythematosus, SystemicLymphocyte DepletionMiceMice, Inbred NODMice, Inbred StrainsMice, KnockoutMice, SCIDReceptors, Antigen, T-Cell, alpha-betaSpleenT-LymphocytesConceptsSystemic lupus erythematosusBeta T cellsAlpha/beta T cellsGamma/delta T cellsDelta T cellsT cell helpT cellsT cell receptorCell helpT cell-mediated conditionsHuman systemic lupus erythematosusSevere combined immunodeficient (SCID) miceDevelopment of autoantibodiesCombined Immunodeficient MiceT-cell immunodeficiencyClass-switched antibodiesB cell collaborationGerminal center formationLupus erythematosusAutoantibody productionLymphoid folliclesImmunoglobulin class switchingIgE synthesisAlpha/betaCell immunodeficiency
1994
The expression of self antigenic determinants: implications for tolerance and autoimmunity
Mamula M, Craft J. The expression of self antigenic determinants: implications for tolerance and autoimmunity. Current Opinion In Immunology 1994, 6: 882-886. PMID: 7536009, DOI: 10.1016/0952-7915(94)90008-6.Peer-Reviewed Original ResearchConceptsAntigen-presenting cellsT cellsSelf peptidesSelf antigenic determinantsT cell responsesPathogenesis of autoimmunityMajor histocompatibility moleculesNormal lymphocytesAntigen processingAntigenic determinantsHistocompatibility moleculesAutoimmunityCell surface proteinsNormal pathwayCellsPeptidesLymphocytesPathogenesisImmunoglobulin synthesis and generalized autoimmunity in mice congenitally deficient in αβ(+) T cells
Wen L, Roberts S, Viney J, Wong F, Mallick C, Findly R, Peng Q, Craft J, Owen M, Mayday A. Immunoglobulin synthesis and generalized autoimmunity in mice congenitally deficient in αβ(+) T cells. Nature 1994, 369: 654-658. PMID: 8208291, DOI: 10.1038/369654a0.Peer-Reviewed Original ResearchConceptsΑβ T cellsT cellsT cell antigen receptorB cell-T cell interactionsHelp of CD4Provision of cytokinesB cell hyperactivitySystemic lupus erythematosusCognate B cell-T cell interactionT cell functionGeneralized autoimmunityLupus erythematosusTransplant rejectionIgE secretionImmunoglobulin synthesisB cellsIgG3 secretionAntigen receptorCD4AutoimmunityMiceSecretionAntibodiesCellsErythematosus