2023
The ion transporter Na+-K+-ATPase enables pathological B cell survival in the kidney microenvironment of lupus nephritis
Chernova I, Song W, Steach H, Hafez O, Al Souz J, Chen P, Chandra N, Cantley L, Veselits M, Clark M, Craft J. The ion transporter Na+-K+-ATPase enables pathological B cell survival in the kidney microenvironment of lupus nephritis. Science Advances 2023, 9: eadf8156. PMID: 36724234, PMCID: PMC9891690, DOI: 10.1126/sciadv.adf8156.Peer-Reviewed Original ResearchConceptsB cellsAutoimmune diseasesAmelioration of proteinuriaLupus nephritis biopsiesB cell infiltrationSodium-potassium adenosine triphosphataseB cell survivalPotassium adenosine triphosphataseLupus nephritisCell infiltrationKidney microenvironmentTissue injuryTherapeutic targetPharmacological inhibitionElevated sodium concentrationLupusHostile microenvironmentHigh expressionKidneySodium concentrationGenetic knockoutCell survivalDiseaseCellsAdenosine triphosphatase
2015
Local Triggering of the ICOS Coreceptor by CD11c+ Myeloid Cells Drives Organ Inflammation in Lupus
Teichmann LL, Cullen JL, Kashgarian M, Dong C, Craft J, Shlomchik MJ. Local Triggering of the ICOS Coreceptor by CD11c+ Myeloid Cells Drives Organ Inflammation in Lupus. Immunity 2015, 42: 552-565. PMID: 25786178, PMCID: PMC4456685, DOI: 10.1016/j.immuni.2015.02.015.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsApoptosisAutoantibodiesCD11c AntigenCell DifferentiationFemaleGene Expression RegulationHumansInducible T-Cell Co-Stimulator LigandInducible T-Cell Co-Stimulator ProteinKidneyLungLupus NephritisMice, TransgenicPhosphatidylinositol 3-KinasesProto-Oncogene Proteins c-aktSignal TransductionT-Lymphocytes, Helper-InducerConceptsInducible T-cell costimulatorOrgan inflammationICOS ligandFollicular helper cell differentiationLupus-prone MRLT-cell costimulatorHelper cell differentiationLupus pathologyLung inflammationAutoantibody formationAutoantibody productionMurine lupusInflamed organsLymphoid tissueT cellsB cellsPathogenic relevanceInflammationLupusPI3K-AktSelective ablationCell differentiationNonredundant rolePotent promoterCells
2013
The nanomaterial-dependent modulation of dendritic cells and its potential influence on therapeutic immunosuppression in lupus
Look M, Saltzman WM, Craft J, Fahmy TM. The nanomaterial-dependent modulation of dendritic cells and its potential influence on therapeutic immunosuppression in lupus. Biomaterials 2013, 35: 1089-1095. PMID: 24183697, PMCID: PMC4164020, DOI: 10.1016/j.biomaterials.2013.10.046.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCells, CulturedDendritic CellsDrug CarriersFemaleImmunosuppression TherapyImmunosuppressive AgentsLactic AcidLupus Erythematosus, SystemicMiceMice, Inbred BALB CMice, Inbred C57BLMice, Inbred NZBMycophenolic AcidNanogelsPermeabilityPolyethylene GlycolsPolyethyleneiminePolyglycolic AcidPolylactic Acid-Polyglycolic Acid CopolymerConceptsDendritic cellsTherapeutic immunosuppressionLupus-prone NZB/W F1 miceNZB/W F1 miceW F1 miceCell immunosuppressionImmunosuppressive therapyInflammatory cytokinesImmune modulatorsF1 miceImmune responseImmunosuppressionVivo efficacySurface markersMycophenolic acidGreater reductionParticulate uptakeAttractive modalityEfficacyCellsNanoparticulate platformSuccessful deliveryImmunosuppressantsLupusCytokines
2012
The pathogenesis of systemic lupus erythematosus—an update
Choi J, Kim ST, Craft J. The pathogenesis of systemic lupus erythematosus—an update. Current Opinion In Immunology 2012, 24: 651-657. PMID: 23131610, PMCID: PMC3508331, DOI: 10.1016/j.coi.2012.10.004.Peer-Reviewed Original ResearchConceptsSystemic lupus erythematosusLupus erythematosusAberrant adaptive immune responseAdaptive immune responsesDisease-specific therapeutic targetsInnate immune mechanismsPathogenic autoantibodiesImmune mechanismsTissue injuryImmune responseTherapeutic targetB cellsDisease mechanismsErythematosusClinical biologyRecent studiesAutoantibodiesLupusSLEPathogenesisInjuryIL-7Rαlow memory CD8+ T cells are significantly elevated in patients with systemic lupus erythematosus
Kim JS, Cho BA, Sim JH, Shah K, Woo CM, Lee EB, Lee DS, Kang JS, Lee WJ, Park CG, Craft J, Kang I, Kim HR. IL-7Rαlow memory CD8+ T cells are significantly elevated in patients with systemic lupus erythematosus. Rheumatology 2012, 51: 1587-1594. PMID: 22661557, PMCID: PMC3418646, DOI: 10.1093/rheumatology/kes100.Peer-Reviewed Original ResearchMeSH KeywordsAdultAntibodies, BlockingAntigens, CDCD8-Positive T-LymphocytesCoculture TechniquesCytotoxicity, ImmunologicFemaleFlow CytometryHumansImmunologic MemoryImmunophenotypingLupus Erythematosus, SystemicLymphocyte CountReceptors, ImmunologicReceptors, Interleukin-7Signaling Lymphocytic Activation Molecule FamilyConceptsEffector memoryFrequency of ILT cellsHealthy individualsHuman effector memoryTarget cellsSystemic lupus erythematosusPathogenesis of lupusSLE patientsMemory CD8Lupus erythematosusNK cellsCytotoxic functionPeripheral bloodDisease manifestationsPatientsCD48 antigenCytotoxic moleculesFlow cytometrySLECell populationsPotential roleLupusILCellular characteristics
2011
Systemic Autoimmunity and Lymphoproliferation Are Associated with Excess IL-7 and Inhibited by IL-7Rα Blockade
Gonzalez-Quintial R, Lawson BR, Scatizzi JC, Craft J, Kono DH, Baccala R, Theofilopoulos AN. Systemic Autoimmunity and Lymphoproliferation Are Associated with Excess IL-7 and Inhibited by IL-7Rα Blockade. PLOS ONE 2011, 6: e27528. PMID: 22102903, PMCID: PMC3213145, DOI: 10.1371/journal.pone.0027528.Peer-Reviewed Original ResearchConceptsT cellsIL-7Systemic autoimmunityIL-7R blockadeIL-7Rα blockadeAutoreactive T cellsMemory T cellsAdvanced disease stageProgression of autoimmunityFibroblastic reticular cellsNovel therapeutic approachesT cell activationAutoimmune manifestationsAutoimmune syndromeCommensal antigensDisease stageIL-7RαTherapeutic approachesLymphocyte homeostasisCell activationReticular cellsAutoimmunityMarked accumulationLupusBlockade
2009
Lupus immunotherapy using CD4 targeted nanoparticles (48.29)
Look M, Stern E, Wang Q, DiPlacido L, Craft J, Fahmy T. Lupus immunotherapy using CD4 targeted nanoparticles (48.29). The Journal Of Immunology 2009, 182: 48.29-48.29. DOI: 10.4049/jimmunol.182.supp.48.29.Peer-Reviewed Original ResearchNZB/W F1 miceW F1 miceCD4 T cellsImmunosuppressive drugsDisease progressionF1 miceT cellsImmunosuppressive drug dosageSystemic lupus erythematosusNanoparticle therapyConventional therapeutic regimensFrequency of dosageLupus erythematosusAutoantibody productionTherapeutic regimensWeekly treatmentTherapeutic featuresAnimal modelsB cellsDrug dosageTherapeutic efficacyLupusImmunotherapyTherapyMice
2003
Intrinsic T Cell Defects in Systemic Autoimmunity
KONG PL, ODEGARD JM, BOUZAHZAH F, CHOI J, EARDLEY LD, ZIELINSKI CE, CRAFT JE. Intrinsic T Cell Defects in Systemic Autoimmunity. Annals Of The New York Academy Of Sciences 2003, 987: 60-67. PMID: 12727624, DOI: 10.1111/j.1749-6632.2003.tb06033.x.Peer-Reviewed Original ResearchConceptsSystemic lupus erythematosusT cell defectsIntrinsic T cell defectCell defectsT cell toleranceLupus pathogenesisLupus erythematosusAutoimmune diseasesSystemic autoimmunityT cellsCell toleranceNuclear antigenGenetic causeLupusBiochemical natureErythematosusAutoimmunityPathogenesisAntigenDiseaseMice
2002
Regulation of T cell-dependent autoantibody production by a γδ T cell line derived from lupus-prone mice
Fujii T, Okada M, Craft J. Regulation of T cell-dependent autoantibody production by a γδ T cell line derived from lupus-prone mice. Cellular Immunology 2002, 217: 23-35. PMID: 12425998, DOI: 10.1016/s0008-8749(02)00509-9.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntibodies, AntinuclearApoptosisB-LymphocytesCell LineCoculture TechniquesCytotoxicity Tests, ImmunologicDNAInterleukin-10Lupus Erythematosus, SystemicLymphocyte ActivationLymphocyte CooperationMiceMice, Inbred C57BLMice, Inbred MRL lprMice, KnockoutReceptors, Antigen, T-Cell, alpha-betaReceptors, Antigen, T-Cell, gamma-deltaT-Lymphocytes, Helper-InducerTumor Necrosis Factor-alphaConceptsGammadelta T cell linesT cell linesAnti-dsDNA productionMRL/B cellsAutoantibody productionCell linesLupus-prone miceMRL/MpGammadelta T cellsT helper cell linesB cell collaborationActivated B cellsContact-dependent mannerAlphabeta TSevere lupusGammadelta TAutoantibody synthesisMurine lupusLupus-proneT cellsCell collaborationHelper cell lineMiceLupus
2001
Cd4+ T Cells from Lupus-Prone Mice Are Hyperresponsive to T Cell Receptor Engagement with Low and High Affinity Peptide Antigens
Vratsanos G, Jung S, Park Y, Craft J. Cd4+ T Cells from Lupus-Prone Mice Are Hyperresponsive to T Cell Receptor Engagement with Low and High Affinity Peptide Antigens. Journal Of Experimental Medicine 2001, 193: 329-338. PMID: 11157053, PMCID: PMC2195926, DOI: 10.1084/jem.193.3.329.Peer-Reviewed Original ResearchConceptsT cell receptorLupus-prone miceT cellsT cell activationPigeon cytochrome cAlpha/beta T cellsCell activationTransgenic T cell receptorBeta T cellsAntigen-presenting cellsCBA/CaJT cell receptor engagementLow affinityBeta-chain geneMRL/Cell receptor engagementPolyclonal activationSpontaneous lupusAmino acids 88Cognate antigenCell receptorAntigenPeptide ligandsReceptor engagementLupus
1999
Autoreactive T cells in murine lupus
Craft J, Peng S, Fujii T, Okada M, Fatenejad S. Autoreactive T cells in murine lupus. Immunologic Research 1999, 19: 245-257. PMID: 10493178, DOI: 10.1007/bf02786492.Peer-Reviewed Original ResearchLessons from Knockout and Transgenic Lupus-Prone Mice
Peng S, Craft J. Lessons from Knockout and Transgenic Lupus-Prone Mice. Contemporary Immunology 1999, 152-166. DOI: 10.1007/978-1-59259-703-1_10.Peer-Reviewed Original ResearchLupus-prone miceSystemic lupus erythematosusNZB ×Disease manifestationsStudy of lupusLupus-like symptomsMRL/MpPathogenesis of lupusB cell toleranceLupus erythematosusImmune deficiencyT cellsImmune organsB cellsDisease pathogenesisImmune systemMurine systemMouse strainsMajority of knowledgeFunctional activityMiceGenetic alterationsLupusHuman disease pathogenesisPathogenesis
1998
Influence of antigen organization on the development of lupus autoantibodies
Fatenejad S, Bennett M, Moslehi J, Craft J. Influence of antigen organization on the development of lupus autoantibodies. Arthritis & Rheumatism 1998, 41: 603-612. PMID: 9550469, DOI: 10.1002/1529-0131(199804)41:4<603::aid-art7>3.0.co;2-e.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntibodiesAutoantibodiesAutoantigensGene ExpressionHeLa CellsHumansImmune ToleranceImmunizationLupus Erythematosus, SystemicMiceMice, Inbred C57BLMice, Inbred StrainsRecombinant Fusion ProteinsRecombinant ProteinsRibonucleoprotein, U1 Small NuclearRibonucleoproteins, Small NuclearRNA-Binding ProteinsT-LymphocytesTumor Cells, CulturedConceptsSystemic lupus erythematosusDevelopment of antibodiesH-2b backgroundDevelopment of lupusT cell responsesT cell toleranceAssessment of antibodiesNative snRNP particlesTypical immune responseLupus erythematosusAutoimmune responseNormal miceAntigen organizationImmune responseForeign immunogensH-2kCell toleranceMajor autoantigenCell responsesMiceRandom orderAntibodiesEukaryotic expression vectorLupusAutoantigens
1997
Roles of interferon-gamma and interleukin-4 in murine lupus.
Peng SL, Moslehi J, Craft J. Roles of interferon-gamma and interleukin-4 in murine lupus. Journal Of Clinical Investigation 1997, 99: 1936-1946. PMID: 9109438, PMCID: PMC508018, DOI: 10.1172/jci119361.Peer-Reviewed Original ResearchConceptsEnd-organ diseaseAutoantibody productionMurine lupusIFN-gammaSerum immunoglobulinsMRL/Mp-lpr/lpr micePathogenic autoantibody productionTiters of IgG2aDevelopment of lupusSystemic autoimmune syndromeAlphabeta T cellsLess IgG1Prototypical Th1Autoimmune syndromeLpr miceProne miceTh2 cytokinesIL-4Comparable levelsTissue injuryT cellsInterleukin-4Critical cytokineLupusLymphadenopathy
1996
Propagation and regulation of systemic autoimmunity by gammadelta T cells.
Peng SL, Madaio MP, Hayday AC, Craft J. Propagation and regulation of systemic autoimmunity by gammadelta T cells. The Journal Of Immunology 1996, 157: 5689-98. PMID: 8955223, DOI: 10.4049/jimmunol.157.12.5689.Peer-Reviewed Original ResearchConceptsGammadelta T cellsAlphabeta T cellsT cellsRenal diseaseMurine lupusSystemic autoimmunityImmune complex renal diseaseT cell-intact miceRoles of alphabetaT-cell-deficient animalsLupus-prone miceSevere renal diseaseComplex renal diseaseLupus syndromeAutoantibody productionConventional CD4Polyclonal expansionPathogenic roleMiceHypergammaglobulinemiaDisease phenotypeAutoimmunityLupusDiseaseCellsMurine lupus in the absence of alpha beta T cells.
Peng SL, Madaio MP, Hughes DP, Crispe IN, Owen MJ, Wen L, Hayday AC, Craft J. Murine lupus in the absence of alpha beta T cells. The Journal Of Immunology 1996, 156: 4041-9. PMID: 8621947, DOI: 10.4049/jimmunol.156.10.4041.Peer-Reviewed Original ResearchConceptsAlpha beta T cellsT cell-dependent mechanismBeta T cellsCell-dependent mechanismT cellsMurine lupusHuman systemic lupus erythematosusLupus-prone MRL miceSystemic lupus erythematosusSystemic autoimmune diseaseLupus erythematosusAutoimmune diseasesImmune depositsMRL miceAlpha betaLupusDiseaseMiceCellsErythematosusHypergammaglobulinemiaAutoantibodiesCD4AutoimmunityKidney
1987
Autoantigenic histone epitopes: a comparison between procainamide‐ and hydralazine‐induced lupus
Craft J, Radding J, Harding M, Bernstein R, Hardin J. Autoantigenic histone epitopes: a comparison between procainamide‐ and hydralazine‐induced lupus. Arthritis & Rheumatism 1987, 30: 689-694. PMID: 2440452, DOI: 10.1002/art.1780300612.Peer-Reviewed Original ResearchConceptsHydralazine-induced lupusSpontaneous systemic lupus erythematosusDrug-induced lupusSystemic lupus erythematosusAbility of serumProcainamide-induced lupusHistone epitopesLupus erythematosusAntihistone antibodiesLupusTechnique of immunoblottingPatientsIndividual histonesSerumEpitopesHistone fragmentsDifferent mechanismsErythematosusProcainamideAntibodies