2024
Validation of an Electronic Health Record–Based Machine Learning Model Compared With Clinical Risk Scores for Gastrointestinal Bleeding
Shung D, Chan C, You K, Nakamura S, Saarinen T, Zheng N, Simonov M, Li D, Tsay C, Kawamura Y, Shen M, Hsiao A, Sekhon J, Laine L. Validation of an Electronic Health Record–Based Machine Learning Model Compared With Clinical Risk Scores for Gastrointestinal Bleeding. Gastroenterology 2024, 167: 1198-1212. PMID: 38971198, PMCID: PMC11493512, DOI: 10.1053/j.gastro.2024.06.030.Peer-Reviewed Original ResearchElectronic health recordsGlasgow-Blatchford scoreEmergency departmentVery-low-risk patientsRisk scoreOakland scoreMachine learning modelsStructured data fieldsClinical risk scoreGastrointestinal bleedingAll-cause mortalityHealth recordsLearning modelsManual data entrySecondary analysisRisk stratification scoresAssess proportionRed blood-cell transfusionPrimary outcomeProportion of patientsData entryOvert gastrointestinal bleedingPrimary analysisReceiver-operating-characteristic curveVery-low-risk
2023
Achieving Value by Risk Stratification With Machine Learning Model or Clinical Risk Score in Acute Upper Gastrointestinal Bleeding: A Cost Minimization Analysis
Shung D, Lin J, Laine L. Achieving Value by Risk Stratification With Machine Learning Model or Clinical Risk Score in Acute Upper Gastrointestinal Bleeding: A Cost Minimization Analysis. The American Journal Of Gastroenterology 2023, 119: 371-373. PMID: 37753930, PMCID: PMC10872988, DOI: 10.14309/ajg.0000000000002520.Peer-Reviewed Original ResearchUpper gastrointestinal bleedingCost-minimization analysisGastrointestinal bleedingUsual careTriage strategiesAcute upper gastrointestinal bleedingClinical risk scoreLow-risk patientsHealthcare payer perspectiveMinimization analysisRisk assessment toolRisk stratificationEmergency departmentPayer perspectiveRisk scoreBleedingAssessment toolCareRisk assessment modelMachine-learning strategiesPatientsCumulative savings
2019
Machine Learning to Predict Outcomes in Patients with Acute Gastrointestinal Bleeding: A Systematic Review
Shung D, Simonov M, Gentry M, Au B, Laine L. Machine Learning to Predict Outcomes in Patients with Acute Gastrointestinal Bleeding: A Systematic Review. Digestive Diseases And Sciences 2019, 64: 2078-2087. PMID: 31055722, DOI: 10.1007/s10620-019-05645-z.Peer-Reviewed Original ResearchConceptsClinical risk scoreUpper gastrointestinal bleedingGastrointestinal bleedingOutcomes of mortalityRisk scoreSystematic reviewOvert gastrointestinal bleedingAcute gastrointestinal bleedingPrognosis Studies toolRisk of biasFull-text studiesCurrent risk assessment toolsRisk assessment toolHospital stayHemostatic interventionRisk stratificationInclusion criteriaPrognostic performanceHigh riskIndependent reviewersConference abstractsLower riskMedian AUCPatientsMortality