2023
Force redistribution in clathrin-mediated endocytosis revealed by coiled-coil force sensors
Ren Y, Yang J, Fujita B, Jin H, Zhang Y, Berro J. Force redistribution in clathrin-mediated endocytosis revealed by coiled-coil force sensors. Science Advances 2023, 9: eadi1535. PMID: 37831774, PMCID: PMC10575576, DOI: 10.1126/sciadv.adi1535.Peer-Reviewed Original ResearchConceptsActin cytoskeletonPlasma membraneHuntingtin Interacting Protein 1Clathrin-mediated endocytosisCountless cellular processesEndocytic machineryCellular processesClathrin latticesProtein condensationCytoskeletonEnd4pProtein 1Membrane deformationPiconewton forcesEndocytosisVivo force measurementsMembranePiconewtonsClathrinMachineryProteinCoatMolecular scale
2018
Munc18-1 catalyzes neuronal SNARE assembly by templating SNARE association
Jiao J, He M, Port SA, Baker RW, Xu Y, Qu H, Xiong Y, Wang Y, Jin H, Eisemann TJ, Hughson FM, Zhang Y. Munc18-1 catalyzes neuronal SNARE assembly by templating SNARE association. ELife 2018, 7: e41771. PMID: 30540253, PMCID: PMC6320071, DOI: 10.7554/elife.41771.Peer-Reviewed Original ResearchConceptsSNARE assemblyMunc18-1Sec1/Munc18-family (SM) proteinsSM protein Munc18-1Membrane fusionMunc18-1 mutationsNeuronal SNARE assemblyFour-helix bundleC-terminal regionN-terminal regionSingle-molecule force spectroscopySNARE motifSm proteinsSynaptic SNAREsMunc18-3SNARE zipperingProtein mechanismsTemplate complexForce spectroscopySnareZipperingProteinAssemblyComplexesVps33Single-Molecule Optical Tweezers Study of Regulated SNARE Assembly
Ma L, Jiao J, Zhang Y. Single-Molecule Optical Tweezers Study of Regulated SNARE Assembly. Methods In Molecular Biology 2018, 1860: 95-114. PMID: 30317500, PMCID: PMC6441361, DOI: 10.1007/978-1-4939-8760-3_6.Peer-Reviewed Original ResearchConceptsSoluble N-ethylmaleimide-sensitive factor attachment protein receptorsSNARE assemblyHigh-resolution optical tweezersN-ethylmaleimide-sensitive factor attachment protein receptorsMembrane fusionFactor attachment protein receptorsOptical tweezers studiesNeuronal SNARE assemblyIntracellular membrane fusionAttachment protein receptorsOptical tweezersΑ-SNAPDetailed experimental protocolCellular compartmentsRegulatory proteinsProtein receptorsDifferent cellsSpatiotemporal resolutionProteinAssemblyFusion processManipulation approachTweezersExperimental approachFusion
2017
Single-molecule force spectroscopy of protein-membrane interactions
Ma L, Cai Y, Li Y, Jiao J, Wu Z, O'Shaughnessy B, De Camilli P, Karatekin E, Zhang Y. Single-molecule force spectroscopy of protein-membrane interactions. ELife 2017, 6: e30493. PMID: 29083305, PMCID: PMC5690283, DOI: 10.7554/elife.30493.Peer-Reviewed Original ResearchConceptsProtein-membrane interactionsC2 domainPlasma membraneMultiple C2 domainsSingle-molecule force spectroscopy approachSingle-molecule force spectroscopyOptical tweezersE-SytsUnprecedented spatiotemporal resolutionForce spectroscopyMembrane bindingMembrane fusionSingle proteinSynaptotagmin-1Biological processesEndoplasmic reticulumSpectroscopy approachLipid exchangeSynaptic vesiclesSynaptotagmin 2ProteinSilica beadsMechanical forcesHigh-resolution methodsSpatiotemporal resolution
2016
Regulation of DNA Translocation Efficiency within the Chromatin Remodeler RSC/Sth1 Potentiates Nucleosome Sliding and Ejection
Clapier CR, Kasten MM, Parnell TJ, Viswanathan R, Szerlong H, Sirinakis G, Zhang Y, Cairns BR. Regulation of DNA Translocation Efficiency within the Chromatin Remodeler RSC/Sth1 Potentiates Nucleosome Sliding and Ejection. Molecular Cell 2016, 62: 453-461. PMID: 27153540, PMCID: PMC5291166, DOI: 10.1016/j.molcel.2016.03.032.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphateBinding SitesBiological TransportCell Cycle ProteinsChromatin Assembly and DisassemblyDNA-Binding ProteinsDNA, FungalHydrolysisMicrofilament ProteinsMutationNuclear ProteinsNucleosomesProtein BindingProtein Interaction Domains and MotifsSaccharomyces cerevisiaeSaccharomyces cerevisiae ProteinsTime FactorsTranscription Factorsα-SNAP Enhances SNARE Zippering by Stabilizing the SNARE Four-Helix Bundle
Ma L, Kang Y, Jiao J, Rebane AA, Keun HK, Xi Z, Qu H, Zhang Y. α-SNAP Enhances SNARE Zippering by Stabilizing the SNARE Four-Helix Bundle. Cell Reports 2016, 15: 531-539. PMID: 27068468, PMCID: PMC4838522, DOI: 10.1016/j.celrep.2016.03.050.Peer-Reviewed Original ResearchConceptsSoluble N-ethylmaleimide-sensitive factor attachment protein receptorsC-terminal domainN-terminal domainMembrane fusionLinker domainΑ-SNAPSynaptic soluble N-ethylmaleimide-sensitive factor attachment protein receptorN-ethylmaleimide-sensitive factor attachment protein receptorsFactor attachment protein receptorsIntracellular membrane fusionAttachment protein receptorsConformational selection mechanismFour-helix bundleSNARE assemblySNARE complexProtein receptorsDynamic assemblyStepwise assemblyAssemblyDomainFusionZipperingOptical tweezersRecent experimentsReceptors
2010
Anomalous DNA binding by E2 regulatory protein driven by spacer sequence TATA
Xi Z, Zhang Y, Hegde RS, Shakked Z, Crothers DM. Anomalous DNA binding by E2 regulatory protein driven by spacer sequence TATA. Nucleic Acids Research 2010, 38: 3827-3833. PMID: 20185566, PMCID: PMC2887970, DOI: 10.1093/nar/gkq114.Peer-Reviewed Original Research
2005
Statistical-Mechanical Theory of DNA Looping
Zhang Y, McEwen AE, Crothers DM, Levene SD. Statistical-Mechanical Theory of DNA Looping. Biophysical Journal 2005, 90: 1903-1912. PMID: 16361335, PMCID: PMC1386771, DOI: 10.1529/biophysj.105.070490.Peer-Reviewed Original ResearchConceptsMechanical theoryRigorous analytical theoryStatistical mechanical theoryMechanics of DNARigorous theoryAnalytical theoryGeometric propertiesAccount protein flexibilityTopological constraintsTheoryDNA cyclizationTerms of amplitudeLoop topologyStrong couplingProtein geometryMultiple classesTheoretical similaritiesDependenceMechanicsLoop closureGeometryTopologyDNA length dependenceWritheLoop
2004
Predicting indirect readout effects in protein–DNA interactions
Zhang Y, Xi Z, Hegde RS, Shakked Z, Crothers DM. Predicting indirect readout effects in protein–DNA interactions. Proceedings Of The National Academy Of Sciences Of The United States Of America 2004, 101: 8337-8341. PMID: 15148366, PMCID: PMC420395, DOI: 10.1073/pnas.0402319101.Peer-Reviewed Original Research