2020
Shortening Velocity Causes Myosin Isoform Shift in Human Engineered Heart Tissues
Ng R, Sewanan LR, Stankey P, Li X, Qyang Y, Campbell S. Shortening Velocity Causes Myosin Isoform Shift in Human Engineered Heart Tissues. Circulation Research 2020, 128: 281-283. PMID: 33183160, PMCID: PMC7855774, DOI: 10.1161/circresaha.120.316950.Peer-Reviewed Original Research
2016
Anisotropic engineered heart tissue made from laser-cut decellularized myocardium
Schwan J, Kwaczala AT, Ryan TJ, Bartulos O, Ren Y, Sewanan LR, Morris AH, Jacoby DL, Qyang Y, Campbell SG. Anisotropic engineered heart tissue made from laser-cut decellularized myocardium. Scientific Reports 2016, 6: 32068. PMID: 27572147, PMCID: PMC5004193, DOI: 10.1038/srep32068.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnisotropyCell Culture TechniquesCells, CulturedEmbryonic Stem CellsInduced Pluripotent Stem CellsLasers, GasMechanotransduction, CellularMyocardial ContractionMyocardiumMyocytes, CardiacPolytetrafluoroethyleneRatsSwineTissue EngineeringTissue ScaffoldsTomography, Optical CoherenceTriiodothyronine
2011
High density cultures of embryoid bodies enhanced cardiac differentiation of murine embryonic stem cells
Lee MY, Bozkulak E, Schliffke S, Amos PJ, Ren Y, Ge X, Ehrlich BE, Qyang Y. High density cultures of embryoid bodies enhanced cardiac differentiation of murine embryonic stem cells. Biochemical And Biophysical Research Communications 2011, 416: 51-57. PMID: 22079290, PMCID: PMC3237870, DOI: 10.1016/j.bbrc.2011.10.140.Peer-Reviewed Original ResearchConceptsMurine embryonic stem cellsEmbryonic stem cellsBone morphogenetic proteinEB culturesCardiac differentiationCardiomyocyte productionEmbryoid body culturesStem cellsCardiac-specific genesEarly cardiac developmentCardiogenic growth factorsNK2 transcription factorCardiac regenerative medicineMESC linesTranscription factorsCardiac developmentMorphogenetic proteinsEmbryoid bodiesDifferentiation systemDifferentiation periodFunctional cardiomyocytesHigh-density culturesMyosin light chain 2vRegenerative medicineCell-based therapiesDerivation of functional ventricular cardiomyocytes using endogenous promoter sequence from murine embryonic stem cells
Lee MY, Sun B, Schliffke S, Yue Z, Ye M, Paavola J, Bozkulak EC, Amos PJ, Ren Y, Ju R, Jung YW, Ge X, Yue L, Ehrlich BE, Qyang Y. Derivation of functional ventricular cardiomyocytes using endogenous promoter sequence from murine embryonic stem cells. Stem Cell Research 2011, 8: 49-57. PMID: 22099020, PMCID: PMC3222859, DOI: 10.1016/j.scr.2011.08.004.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAdherens JunctionsAnimalsBacterial ProteinsBase SequenceCadherinsCalciumCell Culture TechniquesCell LineCell SeparationConnexin 43Embryonic Stem CellsFlow CytometryGap JunctionsHeart VentriclesImaging, Three-DimensionalIntegrasesLuminescent ProteinsMiceMyocytes, CardiacMyosin Light ChainsPromoter Regions, GeneticProteinsRNA, UntranslatedConceptsVentricular cardiomyocytesCalcium transientsNeonatal mouse ventricular cardiomyocytesFunctional excitation-contraction couplingCardiac contractile performanceDouble transgenic miceCurrent-clamp recordingsIntracellular calcium transientsExcitation-contraction couplingAction potential characteristicsMouse ventricular cardiomyocytesMyosin light chain 2vFluorescence-activated cell sortingAdrenergic signalingIntracellular calciumContractile performanceClamp recordingsTransgenic miceElectrical stimulationCardiac repairInduction of differentiationIsoproterenol stimulationExpression of YFPMouse linesN-cadherin