2023
Pain-causing stinging nettle toxins target TMEM233 to modulate NaV1.7 function
Jami S, Deuis J, Klasfauseweh T, Cheng X, Kurdyukov S, Chung F, Okorokov A, Li S, Zhang J, Cristofori-Armstrong B, Israel M, Ju R, Robinson S, Zhao P, Ragnarsson L, Andersson Å, Tran P, Schendel V, McMahon K, Tran H, Chin Y, Zhu Y, Liu J, Crawford T, Purushothamvasan S, Habib A, Andersson D, Rash L, Wood J, Zhao J, Stehbens S, Mobli M, Leffler A, Jiang D, Cox J, Waxman S, Dib-Hajj S, Neely G, Durek T, Vetter I. Pain-causing stinging nettle toxins target TMEM233 to modulate NaV1.7 function. Nature Communications 2023, 14: 2442. PMID: 37117223, PMCID: PMC10147923, DOI: 10.1038/s41467-023-37963-2.Peer-Reviewed Original ResearchConceptsSensory neuronsVoltage-sensing domainNav channelsTransmembrane proteinAccessory proteinsVoltage-gated sodium channelsCritical regulatorPore domainChannel gatingExtracellular loopToxin-mediated effectsNeuronal excitabilityPeptide toxinsProteinSodium channelsPharmacological activitiesNav1.7 functionKnottin peptidesNeuronsImportant insightsToxinSubunitsRegulatorDomainExcelsa
2017
The nonproton ligand of acid-sensing ion channel 3 activates mollusk-specific FaNaC channels via a mechanism independent of the native FMRFamide peptide
Yang X, Niu Y, Liu Y, Yang Y, Wang J, Cheng X, Liang H, Wang H, Hu Y, Lu X, Zhu M, Xu T, Tian Y, Yu Y. The nonproton ligand of acid-sensing ion channel 3 activates mollusk-specific FaNaC channels via a mechanism independent of the native FMRFamide peptide. Journal Of Biological Chemistry 2017, 292: 21662-21675. PMID: 29123030, PMCID: PMC5766947, DOI: 10.1074/jbc.m117.814707.Peer-Reviewed Original ResearchConceptsDEG/ENaCDegenerin/epithelial sodium channelIon channelsAcid-sensing ion channelsMammalian acid-sensing ion channelsSodium channelsDiverse functionsKey residuesEpithelial sodium channelFMRFamide peptidesAncient featureChannel gatingActivation mechanismDistinct mechanismsSubfamiliesMammalsENaCUnitary conductancePathological processesNew insightsNonproton ligandIon selectivityEndogenous agonistSynaptic transmissionFaNaC
2014
Relative motions between left flipper and dorsal fin domains favour P2X4 receptor activation
Zhao W, Wang J, Ma X, Yang Y, Liu Y, Huang L, Fan Y, Cheng X, Chen H, Wang R, Yu Y. Relative motions between left flipper and dorsal fin domains favour P2X4 receptor activation. Nature Communications 2014, 5: 4189. PMID: 24943126, DOI: 10.1038/ncomms5189.Peer-Reviewed Original ResearchConceptsAllosteric changesChannel gatingLeft flipperP2X4 receptorDorsal fin domainAllosteric eventsP2X4 receptor activationPhysiological functionsResidues leadFin domainHydrophobic interactionsEssential roleExtracellular ATPFundamental processesZinc bridgesChannel activationReceptor activationDorsal finP2X receptorsReceptorsGatingDomainActivationL217V291