2006
Combined Feature/Intensity-Based Brain Shift Compensation Using Stereo Guidance
DeLorenzo C, Papademetris X, Vives K, Spencer D, Duncan J. Combined Feature/Intensity-Based Brain Shift Compensation Using Stereo Guidance. 2006, 335-338. DOI: 10.1109/isbi.2006.1624921.Peer-Reviewed Original ResearchSoft tissue deformationBrain shift compensationImage-derived informationSurface displacementsTracking accuracySurface motionTissue deformationAppropriate model parametersShift compensationBrain motionReal surfacesBiomechanical modelStereo camera imagesModel parametersCompensation systemData tradeoffsBrain displacementDisplacementCamera imagesMotionDeformationAccuracyImage intensity
2003
A New Biomechanical Model Based Approach on Brain Shift Compensation
Kobashi K, Papademetris X, Duncan J. A New Biomechanical Model Based Approach on Brain Shift Compensation. Lecture Notes In Computer Science 2003, 2878: 59-66. DOI: 10.1007/978-3-540-39899-8_8.Peer-Reviewed Original ResearchBrain shift compensationInverse finite element analysisFinite element analysisShift compensationEntire displacement fieldExternal forcesReasonable estimation resultsElement analysisDisplacement fieldSurface displacementsDisplacement errorModel Based ApproachBiomechanical responseNavigation errorsBoundary forcesUnknown variablesDimensional synthetic dataModel equationsForceEstimation resultsEquationsCompensationPreoperative imagesBased ApproachBrain boundaries
2001
Quantification of 3-D regional myocardial deformation: shape-based analysis of magnetic resonance images
Sinusas A, Papademetris X, Constable R, Dione D, Slade M, Shi P, Duncan J. Quantification of 3-D regional myocardial deformation: shape-based analysis of magnetic resonance images. AJP Heart And Circulatory Physiology 2001, 281: h698-h714. PMID: 11454574, DOI: 10.1152/ajpheart.2001.281.2.h698.Peer-Reviewed Original Research