2004
Investigations of Photolysis and Rebinding Kinetics in Myoglobin Using Proximal Ligand Replacements †
Cao W, Ye X, Sjodin T, Christian J, Demidov A, Berezhna S, Wang W, Barrick D, Sage J, Champion P. Investigations of Photolysis and Rebinding Kinetics in Myoglobin Using Proximal Ligand Replacements †. Biochemistry 2004, 43: 11109-11117. PMID: 15323570, DOI: 10.1021/bi049077g.Peer-Reviewed Original ResearchConceptsCO rebinding kineticsRebinding kineticsDiatomic ligandsRaman spectraH93G myoglobinLigand vibrational modesLaser flash photolysisResonance Raman spectraBind exogenous ligandsWild-type MbCOCO rebinding ratesTime-resolved Raman spectroscopyProximal ligandFlash photolysisGeminate phaseVibrational modesProximal linkageLigandRebinding rateKinetic resultsExogenous ligandsPhotolysisKineticsHemeMbCOProximal and Distal Influences on Ligand Binding Kinetics in Microperoxidase and Heme Model Compounds †
Cao W, Ye X, Georgiev G, Berezhna S, Sjodin T, Demidov A, Wang W, Sage J, Champion P. Proximal and Distal Influences on Ligand Binding Kinetics in Microperoxidase and Heme Model Compounds †. Biochemistry 2004, 43: 7017-7027. PMID: 15170339, DOI: 10.1021/bi0497291.Peer-Reviewed Original ResearchConceptsRebinding kineticsTime-resolved IR measurementsCO docking sitesLaser flash photolysisLigand rebinding kineticsTime-resolved Raman spectraCO rebinding kineticsTime-resolved Raman spectroscopyFe-protoporphyrin IXFlash photolysisGeminate rebindingLigand binding kineticsHeme complexNative myoglobinRaman spectraIR measurementsVibrational modesMicelle-encapsulatedDilution conditionsMicroperoxidaseLigandBinding kineticsKineticsEnergetic significanceConcentration samplesRapid timescale processes and the role of electronic surface coupling in the photolysis of diatomic ligands from heme proteins
Champion P, Rosca F, Ionascu D, Cao W, Ye X. Rapid timescale processes and the role of electronic surface coupling in the photolysis of diatomic ligands from heme proteins. Faraday Discussions 2004, 127: 123-135. PMID: 15471342, DOI: 10.1039/b316440c.Peer-Reviewed Original ResearchConceptsVibrational coherenceExcited state potential energy surfacesState potential energy surfaceLaser excitationSpin-forbidden naturePotential energy surfaceIron-histidine modeHeme protein myoglobinUltrafast time scaleIron spin stateRaman inactive modesFemtosecond laser excitationResonance Raman measurementsDiatomic ligandsEnergy surfaceGeminate recombinationUnpaired electronLigand dissociationSurface crossingsIron atomsUnphotolyzed stateVibrational frequenciesField interactionsExcited statesProtein myoglobin
2001
Water Penetration and Binding to Ferric Myoglobin †
Cao W, Christian J, Champion P, Rosca F, Sage J. Water Penetration and Binding to Ferric Myoglobin †. Biochemistry 2001, 40: 5728-5737. PMID: 11341838, DOI: 10.1021/bi010067e.Peer-Reviewed Original ResearchConceptsH2O bindingHeme pocketHydrogen bondsHis-64Heme ironFlash photolysis investigationsPhotodissociation of NOFerric heme proteinsH2O ligandsWater moleculesNO photolysisHorse heart metmyoglobinHeme proteinsCO escapeBound waterRebinding rateSmall moleculesH2OPhotolysisDissociation constantBondsHydrogenHemeMoleculesPhysiological NO concentrations