2024
A core tensor sparsity enhancement method for solving Tucker-2 model of multi-subject fMRI data
Han Y, Lin Q, Kuang L, Zhao B, Gong X, Cong F, Wang Y, Calhoun V. A core tensor sparsity enhancement method for solving Tucker-2 model of multi-subject fMRI data. Biomedical Signal Processing And Control 2024, 95: 106471. DOI: 10.1016/j.bspc.2024.106471.Peer-Reviewed Original ResearchTucker-2 modelMulti-subject fMRI dataFactor matricesCore tensorHalf-quadratic splittingTensor structure informationLow-rank constraintTensor sparsitySparsity constraintQuadratic splittingTask-related fMRI dataImprovement of accuracyEnhancement methodOrthogonality constraintsFMRI dataProcrustes solutionSimulated fMRI dataTucker-3 modelSparsityTemporal evidenceResting-state fMRI dataIdentity matrixDecomposition modelIntrinsic relationshipStructural informationSMART (Splitting-Merging Assisted Reliable) Independent Component Analysis for Extracting Accurate Brain Functional Networks
He X, Calhoun V, Du Y. SMART (Splitting-Merging Assisted Reliable) Independent Component Analysis for Extracting Accurate Brain Functional Networks. Neuroscience Bulletin 2024, 40: 905-920. PMID: 38491231, DOI: 10.1007/s12264-024-01184-4.Peer-Reviewed Original ResearchConceptsIndependent component analysisFunctional magnetic resonance imagingClustering independent componentsFunctional networksIndependent component analysis methodMulti-subject fMRI dataIndependent componentsBrain functional networksFMRI dataSubject-specific functional networksFunctional magnetic resonance imaging dataOptimal model orderSmartComponent analysis
2023
Extraction of One Time Point Dynamic Group Features via Tucker Decomposition of Multi-subject FMRI Data: Application to Schizophrenia
Han Y, Lin Q, Kuang L, Hao Y, Li W, Gong X, Calhoun V. Extraction of One Time Point Dynamic Group Features via Tucker Decomposition of Multi-subject FMRI Data: Application to Schizophrenia. Communications In Computer And Information Science 2023, 1963: 518-527. DOI: 10.1007/978-981-99-8138-0_41.Peer-Reviewed Original ResearchAmplitude of low frequency fluctuationsFMRI dataLow frequency fluctuationsSchizophrenia groupHealthy controlsMulti-subject fMRI dataInferior parietal lobuleProperties of brain functionParietal lobuleFMRI-dataMental disordersSchizophreniaBrain functionActivity differencesFrequency fluctuationsTwo-sample t-testSliding-window techniqueTucker decompositionREGRESSION-ASSISTED INDEPENDENT VECTOR ANALYSIS: A SOLUTION TO LARGE-SCALE FMRI DATA ANALYSIS
Yang H, Gabrielson B, Calhoun V, Adali T. REGRESSION-ASSISTED INDEPENDENT VECTOR ANALYSIS: A SOLUTION TO LARGE-SCALE FMRI DATA ANALYSIS. 2023, 00: 1443-1447. DOI: 10.1109/ieeeconf59524.2023.10476796.Peer-Reviewed Original ResearchTopological Characteristics of 5d Spatially Dynamic Brain Networks in Schizophrenia
Salman M, Iraji A, Lewis N, Calhoun V. Topological Characteristics of 5d Spatially Dynamic Brain Networks in Schizophrenia. 2023, 00: 1-5. DOI: 10.1109/isbi53787.2023.10230513.Peer-Reviewed Original ResearchFunctional magnetic resonance imagingSchizophrenia patientsIntrinsic connectivity networksFMRI dataIndependent component analysisResting-state fMRI studiesAnalysis of fMRI dataSpatial independent component analysisHuman brain functionDynamic brain networksFMRI studyBrain networksBrain functionAberrant behaviorBrain disordersBrain statesSchizophreniaConnectivity networksMagnetic resonance imagingMulti-subject fMRI dataData-driven analysisResonance imagingDynamics of controlSpatial activityDisorders