2017
Mitochondrial Targeted Catalase Protects Against High-Fat Diet-Induced Muscle Insulin Resistance by Decreasing Intramuscular Lipid Accumulation
Lee HY, Lee JS, Alves T, Ladiges W, Rabinovitch PS, Jurczak MJ, Choi CS, Shulman GI, Samuel VT. Mitochondrial Targeted Catalase Protects Against High-Fat Diet-Induced Muscle Insulin Resistance by Decreasing Intramuscular Lipid Accumulation. Diabetes 2017, 66: db161334. PMID: 28476930, PMCID: PMC5521865, DOI: 10.2337/db16-1334.Peer-Reviewed Original ResearchConceptsHigh-fat dietMuscle insulin resistanceAcute lipid infusionInsulin resistanceRegular chowLipid infusionMCAT miceInsulin actionLipid-induced insulin resistanceDiet-induced insulin resistanceReactive oxygen speciesHyperinsulinemic-euglycemic clampWild-type miceMuscle fat oxidationIntramuscular lipid accumulationROS productionAcute infusionHFD-fedWT miceImpaired insulinPKCθ activationFat oxidationLipid emulsionMuscle insulinMice
2014
Targeting steroid receptor coactivator 1 with antisense oligonucleotides increases insulin-stimulated skeletal muscle glucose uptake in chow-fed and high-fat-fed male rats
Cantley JL, Vatner DF, Galbo T, Madiraju A, Petersen M, Perry RJ, Kumashiro N, Guebre-Egziabher F, Gattu AK, Stacy MR, Dione DP, Sinusas AJ, Ragolia L, Hall CE, Manchem VP, Bhanot S, Bogan JS, Samuel VT. Targeting steroid receptor coactivator 1 with antisense oligonucleotides increases insulin-stimulated skeletal muscle glucose uptake in chow-fed and high-fat-fed male rats. AJP Endocrinology And Metabolism 2014, 307: e773-e783. PMID: 25159329, PMCID: PMC4216948, DOI: 10.1152/ajpendo.00148.2014.Peer-Reviewed Original ResearchMeSH KeywordsAdipose TissueAnimalsBiological TransportDiet, High-FatEnzyme InhibitorsGene Expression Regulation, EnzymologicGlucose IntoleranceGlucose Transporter Type 4Insulin ResistanceIntracellular Signaling Peptides and ProteinsIntramolecular OxidoreductasesLipocalinsLiverMaleMuscle, SkeletalNuclear Receptor Coactivator 1Oligodeoxyribonucleotides, AntisensePhosphoenolpyruvate Carboxykinase (GTP)Prostaglandin D2Protein Interaction Domains and MotifsProteolysisRats, Sprague-DawleyConceptsMuscle glucose uptakeSteroid receptor coactivator-1Endogenous glucose productionInsulin-stimulated muscle glucose uptakeReceptor coactivator-1Glucose uptakeGlucose homeostasisInsulin-stimulated skeletal muscle glucose uptakeAntisense oligonucleotideBasal endogenous glucose productionInsulin-stimulated whole-body glucose disposalCoactivator-1Whole-body glucose disposalSkeletal muscle glucose uptakeLipocalin-type prostaglandin D2 synthaseSprage-Dawley ratsGluconeogenic enzymes
2013
Thyroid hormone receptor-β agonists prevent hepatic steatosis in fat-fed rats but impair insulin sensitivity via discrete pathways
Vatner DF, Weismann D, Beddow SA, Kumashiro N, Erion DM, Liao XH, Grover GJ, Webb P, Phillips KJ, Weiss RE, Bogan JS, Baxter J, Shulman GI, Samuel VT. Thyroid hormone receptor-β agonists prevent hepatic steatosis in fat-fed rats but impair insulin sensitivity via discrete pathways. AJP Endocrinology And Metabolism 2013, 305: e89-e100. PMID: 23651850, PMCID: PMC3725564, DOI: 10.1152/ajpendo.00573.2012.Peer-Reviewed Original ResearchMeSH KeywordsAcetatesAnilidesAnimalsDietary FatsFatty LiverGene ExpressionGluconeogenesisGlucose Transporter Type 4HyperglycemiaHyperinsulinismInsulin ResistanceMaleMuscle, SkeletalNon-alcoholic Fatty Liver DiseasePhenolsRatsRats, Sprague-DawleySignal TransductionThyroid Hormone Receptors betaTriglyceridesConceptsEndogenous glucose productionHepatic insulin sensitivityInsulin sensitivityHepatic steatosisFat-fed ratsInsulin-stimulated peripheral glucose disposalTRβ agonistsInsulin-stimulated skeletal muscle glucose uptakePotent lipid-lowering drugsNonalcoholic fatty liver diseaseWhite adipose tissue lipolysisMale Sprague-Dawley ratsSkeletal muscle glucose uptakeGC-1 treatmentPeripheral glucose disposalFatty liver diseaseImpairs insulin sensitivityLipid-lowering drugsHepatic triglyceride contentAdipose tissue lipolysisMuscle glucose uptakeSprague-Dawley ratsHepatic insulin resistanceSkeletal muscle insulinPotential adverse effects
2012
Mechanisms for Insulin Resistance: Common Threads and Missing Links
Samuel VT, Shulman GI. Mechanisms for Insulin Resistance: Common Threads and Missing Links. Cell 2012, 148: 852-871. PMID: 22385956, PMCID: PMC3294420, DOI: 10.1016/j.cell.2012.02.017.Peer-Reviewed Original ResearchConceptsUnfolded protein response pathwayProtein response pathwayInsulin resistanceFatty acid uptakeResponse pathwaysLipid metabolitesAcid uptakeSpecific lipid metabolitesEctopic lipid depositionImmune pathwaysPathwayImpaired insulinCommon final pathwayCellular changesComplex metabolic disorderSkeletal muscleMetabolic disordersLipid depositionFinal pathwayEnergy expenditureAccumulationEtiological pathwaysMetabolitesMissing linkResistance
2001
Disruption of Sur2-containing KATP channels enhances insulin-stimulated glucose uptake in skeletal muscle
Chutkow W, Samuel V, Hansen P, Pu J, Valdivia C, Makielski J, Burant C. Disruption of Sur2-containing KATP channels enhances insulin-stimulated glucose uptake in skeletal muscle. Proceedings Of The National Academy Of Sciences Of The United States Of America 2001, 98: 11760-11764. PMID: 11562480, PMCID: PMC58803, DOI: 10.1073/pnas.201390398.Peer-Reviewed Original ResearchMeSH KeywordsAnalysis of VarianceAnimalsATP-Binding Cassette TransportersBiological TransportBlood GlucoseDeoxyglucoseExonsGlucoseGlucose Clamp TechniqueGlucose Tolerance TestGlucose Transporter Type 4InsulinIntronsMiceMice, KnockoutMonosaccharide Transport ProteinsMuscle ProteinsMuscle, SkeletalPolymerase Chain ReactionPotassium ChannelsPotassium Channels, Inwardly RectifyingReceptors, DrugRNA, MessengerSignal TransductionSodium-Potassium-Exchanging ATPaseSulfonylurea ReceptorsTriglyceridesWeight GainConceptsSkeletal muscleInsulin-stimulated glucose transportGene-targeting strategiesGlucose uptake mechanismsInsulin-stimulated glucose uptakeHomozygous null miceRegulatory subunitInsertional mutagenesisWild typeEnhanced glucose useProtection of tissuesDiverse arrayGlucose transportChannel activityUptake mechanismNull miceATP-sensitive potassium channelsPotassium channelsGlucose uptakeMembrane excitabilityFuture therapeutic approachesWild-type littermatesTarget blood glucose levelsInsulin actionPhysiologic function