2024
EMATA: a toolbox for the automatic extraction and modeling of arterial inputs for tracer kinetic analysis in [(18)F]FDG brain studies.
De Francisci M, Silvestri E, Bettinelli A, Volpi T, Goyal MS, Vlassenko AG, Cecchin D, Bertoldo A. EMATA: a toolbox for the automatic extraction and modeling of arterial inputs for tracer kinetic analysis in [(18)F]FDG brain studies. EJNMMI Phys 2024, 11: 105. PMID: 39715888, DOI: 10.1186/s40658-024-00707-2.Peer-Reviewed Original ResearchQuantitative Accuracy Assessment of the NeuroEXPLORER for Diverse Imaging Applications: Moving Beyond Standard Evaluations.
Omidvari N, Shanina E, Leung E, Sun X, Li Y, Mulnix T, Gravel P, Henry S, Matuskey D, Volpi T, Jones T, Badawi R, Li H, Carson R, Qi J, Cherry S. Quantitative Accuracy Assessment of the NeuroEXPLORER for Diverse Imaging Applications: Moving Beyond Standard Evaluations. Journal Of Nuclear Medicine 2024, jnumed.124.268309. PMID: 39638433, DOI: 10.2967/jnumed.124.268309.Peer-Reviewed Original ResearchContrast recovery coefficientHoffman phantomUniform phantomIQ phantomRecovery coefficientBrain PET systemHoffman brain phantomBrain uptakeSpatial resolutionDiverse imaging applicationsCylindrical phantomPET systemBrain phantomNeuroimaging studiesImage qualityImaging conditionsPhantomReconstruction parametersImaging time pointsTime pointsImage-derived input functionHigher spatial resolutionQuantitative accuracyDelayed time pointsBrain disordersIndividual-level metabolic connectivity from dynamic [(18)F]FDG PET reveals glioma-induced impairments in brain architecture and offers novel insights beyond the SUVR clinical standard.
Vallini G, Silvestri E, Volpi T, Lee JJ, Vlassenko AG, Goyal MS, Cecchin D, Corbetta M, Bertoldo A. Individual-level metabolic connectivity from dynamic [(18)F]FDG PET reveals glioma-induced impairments in brain architecture and offers novel insights beyond the SUVR clinical standard. Eur J Nucl Med Mol Imaging 2024 PMID: 39472368, DOI: 10.1007/s00259-024-06956-8.Peer-Reviewed Original ResearchPerformance Characteristics of the NeuroEXPLORER, a Next-Generation Human Brain PET/CT Imager
Li H, Badawi R, Cherry S, Fontaine K, He L, Henry S, Hillmer A, Hu L, Khattar N, Leung E, Li T, Li Y, Liu C, Liu P, Lu Z, Majewski S, Matuskey D, Morris E, Mulnix T, Omidvari N, Samanta S, Selfridge A, Sun X, Toyonaga T, Volpi T, Zeng T, Jones T, Qi J, Carson R. Performance Characteristics of the NeuroEXPLORER, a Next-Generation Human Brain PET/CT Imager. Journal Of Nuclear Medicine 2024, 65: jnumed.124.267767. PMID: 38871391, PMCID: PMC11294061, DOI: 10.2967/jnumed.124.267767.Peer-Reviewed Original ResearchPeak noise-equivalent count rateNoise-equivalent count rateTime-of-flight resolutionField of viewCount rateExtended axial field-of-viewTransverse field-of-viewAxial field-of-viewField-of-view centerMini-Derenzo phantomSpatial resolutionTangential spatial resolutionsCount rate performanceContrast recovery coefficientHuman brain PET imagingMeasurements of spatial resolutionNEMA sensitivityEnergy resolutionScatter fractionBrain phantomBackprojection reconstructionBrain PET imagingTime resolutionRadial offsetF-FDG imagingThe brain's "dark energy" puzzle: How strongly is glucose metabolism linked to resting-state brain activity?
Volpi T, Silvestri E, Aiello M, Lee JJ, Vlassenko AG, Goyal MS, Corbetta M, Bertoldo A. The brain's "dark energy" puzzle: How strongly is glucose metabolism linked to resting-state brain activity? J Cereb Blood Flow Metab 2024, 271678X241237974. PMID: 38443762, DOI: 10.1177/0271678X241237974.Peer-Reviewed Original Research
2023
An update on the use of image-derived input functions for human PET studies: new hopes or old illusions?
Volpi T, Maccioni L, Colpo M, Debiasi G, Capotosti A, Ciceri T, Carson RE, DeLorenzo C, Hahn A, Knudsen GM, Lammertsma AA, Price JC, Sossi V, Wang G, Zanotti-Fregonara P, Bertoldo A, Veronese M. An update on the use of image-derived input functions for human PET studies: new hopes or old illusions? EJNMMI Res 2023, 13: 97. PMID: 37947880, DOI: 10.1186/s13550-023-01050-w.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsA new framework for metabolic connectivity mapping using bolus [(18)F]FDG PET and kinetic modeling.
Volpi T, Vallini G, Silvestri E, Francisci M, Durbin T, Corbetta M, Lee JJ, Vlassenko AG, Goyal MS, Bertoldo A. A new framework for metabolic connectivity mapping using bolus [(18)F]FDG PET and kinetic modeling. J Cereb Blood Flow Metab 2023, 271678X231184365. PMID: 37377103, DOI: 10.1177/0271678X231184365.Peer-Reviewed Original ResearchLinking resting-state network fluctuations with systems of coherent synaptic density: A multimodal fMRI and 11C-UCB-J PET study
Fang X, Volpi T, Holmes S, Esterlis I, Carson R, Worhunsky P. Linking resting-state network fluctuations with systems of coherent synaptic density: A multimodal fMRI and 11C-UCB-J PET study. Frontiers In Human Neuroscience 2023, 17: 1124254. PMID: 36908710, PMCID: PMC9995441, DOI: 10.3389/fnhum.2023.1124254.Peer-Reviewed Original ResearchSynaptic densityRSN activityResting-state network connectivityRSN functional connectivityAnterior default mode networkJ PET studyResting-state fMRIBrain functional organizationDefault mode networkHealthy adult participantsExecutive control networkRSN connectivityFunctional organizationPsychiatric disordersMedial prefrontalSalience networkPET studiesFunctional connectivityHealthy agingFractional amplitudeLow-frequency fluctuationsNeurophysiological linkSynaptic architectureAdult participantsDefault-mode activity
2022
Variability of regional glucose metabolism and the topology of functional networks in the human brain.
Palombit A, Silvestri E, Volpi T, Aiello M, Cecchin D, Bertoldo A, Corbetta M. Variability of regional glucose metabolism and the topology of functional networks in the human brain. Neuroimage 2022, 257: 119280. PMID: 35525522, DOI: 10.1016/j.neuroimage.2022.119280.Peer-Reviewed Original ResearchImage-derived Input Function in brain [(18)F]FDG PET data: which alternatives to the carotid siphons?
Silvestri E, Volpi T, Bettinelli A, De Francisci M, Jones J, Corbetta M, Cecchin D, Bertoldo A. Image-derived Input Function in brain [(18)F]FDG PET data: which alternatives to the carotid siphons? Annu Int Conf IEEE Eng Med Biol Soc 2022, 2022: 243-246. PMID: 36085666, DOI: 10.1109/EMBC48229.2022.9871200.Peer-Reviewed Original ResearchModeling venous plasma samples in [(18)F] FDG PET studies: a nonlinear mixed-effects approach.
Volpi T, Lee JJ, Silvestri E, Durbin T, Corbetta M, Goyal MS, Vlassenko AG, Bertoldo A. Modeling venous plasma samples in [(18)F] FDG PET studies: a nonlinear mixed-effects approach. Annu Int Conf IEEE Eng Med Biol Soc 2022, 2022: 4704-4707. PMID: 36086500, DOI: 10.1109/EMBC48229.2022.9871429.Peer-Reviewed Original Research
2021
Assessing different approaches to estimate single-subject metabolic connectivity from dynamic [(18)F]fluorodeoxyglucose Positron Emission Tomography data.
Volpi T, Silvestri E, Corbetta M, Bertoldo A. Assessing different approaches to estimate single-subject metabolic connectivity from dynamic [(18)F]fluorodeoxyglucose Positron Emission Tomography data. Annu Int Conf IEEE Eng Med Biol Soc 2021, 2021: 3259-3262. PMID: 34891936, DOI: 10.1109/EMBC46164.2021.9630441.Peer-Reviewed Original Research