2020
Reduced Platelet miR-223 Induction in Kawasaki Disease Leads to Severe Coronary Artery Pathology Through a miR-223/PDGFRβ Vascular Smooth Muscle Cell Axis
Zhang Y, Wang Y, Zhang L, Xia L, Zheng M, Zeng Z, Liu Y, Yarovinsky T, Ostriker AC, Fan X, Weng K, Su M, Huang P, Martin KA, Hwa J, Tang WH. Reduced Platelet miR-223 Induction in Kawasaki Disease Leads to Severe Coronary Artery Pathology Through a miR-223/PDGFRβ Vascular Smooth Muscle Cell Axis. Circulation Research 2020, 127: 855-873. PMID: 32597702, PMCID: PMC7486265, DOI: 10.1161/circresaha.120.316951.Peer-Reviewed Original ResearchMeSH KeywordsAdultAge FactorsAnimalsBlood PlateletsCase-Control StudiesCells, CulturedChildChild, PreschoolCoronary Artery DiseaseCoronary VesselsDisease Models, AnimalFemaleHumansInfantMaleMice, Inbred C57BLMice, KnockoutMicroRNAsMucocutaneous Lymph Node SyndromeMuscle, Smooth, VascularMyocytes, Smooth MusclePlatelet ActivationProspective StudiesReceptor, Platelet-Derived Growth Factor betaSeverity of Illness IndexSignal TransductionYoung AdultConceptsSevere coronary pathologyCoronary artery pathologyKawasaki diseaseCoronary pathologyArtery pathologyMiR-223Medial damageHealthy controlsVSMC dedifferentiationHallmark of KDMiR-223 knockout miceVascular smooth muscle cell dedifferentiationSmooth muscle cell dedifferentiationPlatelet miR-223Platelet-derived miRNAsVSMC differentiationMedial elastic fibersMiR-223 levelsMuscle cell dedifferentiationPotential therapeutic strategyInhibitor imatinib mesylateVascular smooth muscle cell phenotypeSmooth muscle cell phenotypeMiR-223 mimicsUptake of platelets
2018
T cell LFA-1-induced proinflammatory mRNA stabilization is mediated by the p38 pathway kinase MK2 in a process regulated by hnRNPs C, H1 and K
Rao GK, Wong A, Collinge M, Sarhan J, Yarovinsky TO, Ramgolam VS, Gaestel M, Pardi R, Bender JR. T cell LFA-1-induced proinflammatory mRNA stabilization is mediated by the p38 pathway kinase MK2 in a process regulated by hnRNPs C, H1 and K. PLOS ONE 2018, 13: e0201103. PMID: 30048492, PMCID: PMC6065199, DOI: 10.1371/journal.pone.0201103.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell Culture TechniquesCytoplasmELAV-Like Protein 1Heterogeneous-Nuclear RibonucleoproteinsHumansIntracellular Signaling Peptides and ProteinsJurkat CellsLymphocyte Function-Associated Antigen-1Mice, Inbred C57BLMice, KnockoutProtein Serine-Threonine KinasesProteomeRNA StabilityRNA, MessengerSignal TransductionT-LymphocytesConceptsKinase MK2Β2-integrin lymphocyte function-associated antigen-1AU-rich elementsLymphocyte function-associated antigen-1Integrin lymphocyte function-associated antigen-1HuR localizationProtein HuR.Key regulatorMRNA stabilizationCritical activatorCytoplasmic translocationHuR activitySequential activationHuRIntricate processFunction-associated antigen-1MRNAEngagement resultsMK2Antigen 1H1ActivationHnRNPsHuR.Transcripts
2012
Virus-cell fusion as a trigger of innate immunity dependent on the adaptor STING
Holm CK, Jensen SB, Jakobsen MR, Cheshenko N, Horan KA, Moeller HB, Gonzalez-Dosal R, Rasmussen SB, Christensen MH, Yarovinsky TO, Rixon FJ, Herold BC, Fitzgerald KA, Paludan SR. Virus-cell fusion as a trigger of innate immunity dependent on the adaptor STING. Nature Immunology 2012, 13: 737-743. PMID: 22706339, PMCID: PMC3411909, DOI: 10.1038/ni.2350.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell FusionChemokine CXCL10HEK293 CellsHeLa CellsHerpesvirus 1, HumanHumansImmunity, InnateInterferon Type ILeukocytesLymphocyte ActivationMacrophagesMembrane FusionMembrane GlycoproteinsMembrane ProteinsMiceMice, KnockoutMyeloid Differentiation Factor 88Signal TransductionToll-Like Receptor 7Toll-Like Receptor 9Virus InternalizationMacrophage β2 Integrin–Mediated, HuR-Dependent Stabilization of Angiogenic Factor–Encoding mRNAs in Inflammatory Angiogenesis
Zhang J, Modi Y, Yarovinsky T, Yu J, Collinge M, Kyriakides T, Zhu Y, Sessa WC, Pardi R, Bender JR. Macrophage β2 Integrin–Mediated, HuR-Dependent Stabilization of Angiogenic Factor–Encoding mRNAs in Inflammatory Angiogenesis. American Journal Of Pathology 2012, 180: 1751-1760. PMID: 22322302, PMCID: PMC3349897, DOI: 10.1016/j.ajpath.2011.12.025.Peer-Reviewed Original ResearchMeSH KeywordsAngiogenesis Inducing AgentsAnimalsCD18 AntigensCell AdhesionCells, CulturedDisease Models, AnimalELAV ProteinsGene Expression RegulationGene Knockout TechniquesHindlimbInflammationIschemiaMacrophagesMiceMice, KnockoutMuscle, SkeletalNeovascularization, PathologicReal-Time Polymerase Chain ReactionRNA, MessengerConceptsKnockout miceAngiogenic factorsT cell cytokine productionIntercellular adhesion molecule-1Blood flow recoveryFemoral artery ligationLittermate wild-type controlsVascular endothelial growth factorBone marrow-derived macrophagesMatrix metalloproteinase-9Adhesion molecule-1Endothelial growth factorMarrow-derived macrophagesSoluble factor productionWild-type controlsArtery ligationLigand intercellular adhesion molecule-1Cytokine productionInflammatory angiogenesisMetalloproteinase-9Tissue ischemiaInflammatory stimuliMolecule-1Macrophage productionNeovascular responsePhospholipid Scramblase 1 Mediates Type I Interferon-Induced Protection against Staphylococcal α-Toxin
Lizak M, Yarovinsky TO. Phospholipid Scramblase 1 Mediates Type I Interferon-Induced Protection against Staphylococcal α-Toxin. Cell Host & Microbe 2012, 11: 70-80. PMID: 22264514, PMCID: PMC3266557, DOI: 10.1016/j.chom.2011.12.004.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphateAnimalsBacterial ToxinsBody TemperatureBody WeightCell LineCell SurvivalDisease Models, AnimalEpithelial CellsHemolysin ProteinsHumansInterferon-alphaLipoylationMiceMice, KnockoutPhospholipid Transfer ProteinsProtein Processing, Post-TranslationalStaphylococcal InfectionsStaphylococcus aureusSurvival AnalysisConceptsLung epithelial cellsI interferonΑ-toxinStaphylococcal α-toxinCytolytic activityPhospholipid scramblase 1Epithelial cellsInnate protective mechanismsCause of pneumoniaHuman lung epithelial cellsType I interferonAureus clinical isolatesPore-forming toxinsMajor virulence factorScramblase 1Intracellular ATP depletionPositive pathogen Staphylococcus aureusMice displayClinical isolatesAureus strainsProtective mechanismCellular depletionBacterial pore-forming toxinsVirulence factorsUnderlying mechanism