2021
Single-cell longitudinal analysis of SARS-CoV-2 infection in human airway epithelium identifies target cells, alterations in gene expression, and cell state changes
Ravindra NG, Alfajaro MM, Gasque V, Huston NC, Wan H, Szigeti-Buck K, Yasumoto Y, Greaney AM, Habet V, Chow RD, Chen JS, Wei J, Filler RB, Wang B, Wang G, Niklason LE, Montgomery RR, Eisenbarth SC, Chen S, Williams A, Iwasaki A, Horvath TL, Foxman EF, Pierce RW, Pyle AM, van Dijk D, Wilen CB. Single-cell longitudinal analysis of SARS-CoV-2 infection in human airway epithelium identifies target cells, alterations in gene expression, and cell state changes. PLOS Biology 2021, 19: e3001143. PMID: 33730024, PMCID: PMC8007021, DOI: 10.1371/journal.pbio.3001143.Peer-Reviewed Original ResearchConceptsSARS-CoV-2 infectionSARS-CoV-2Human bronchial epithelial cellsInterferon-stimulated genesCell state changesAcute respiratory syndrome coronavirus 2 infectionSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infectionSyndrome coronavirus 2 infectionCell tropismCoronavirus 2 infectionCoronavirus disease 2019Onset of infectionCell-intrinsic expressionCourse of infectionAir-liquid interface culturesHost-viral interactionsBronchial epithelial cellsSingle-cell RNA sequencingCell typesIL-1Disease 2019Human airwaysDevelopment of therapeuticsDrug AdministrationViral replication
2019
Mitofusin 1 is required for female fertility and to maintain ovarian follicular reserve
Zhang M, Bener MB, Jiang Z, Wang T, Esencan E, Scott III R, Horvath T, Seli E. Mitofusin 1 is required for female fertility and to maintain ovarian follicular reserve. Cell Death & Disease 2019, 10: 560. PMID: 31332167, PMCID: PMC6646343, DOI: 10.1038/s41419-019-1799-3.Peer-Reviewed Original ResearchConceptsOocyte-granulosa cell communicationDynamic organellesAccumulation of ceramideFemale reproductive agingMitofusin 1Secondary follicle stageMitochondrial dynamicsCell communicationReproductive phenotypesCeramide synthesis inhibitor myriocinDevelopmental arrestApoptotic cell lossMitochondrial dysfunctionTargeted deletionOvarian follicular reserveOocyte maturationFemale fertilityFollicle stageDeletionPhenotypeReproductive agingOocytesCadherinFollicular reserveOrganelles
2018
Effects of myeloid sirtuin 1 deficiency on hypothalamic neurogranin in mice fed a high-fat diet
Kim KE, Jeong EA, Shin HJ, Lee JY, Choi EB, An HS, Park KA, Jin Z, Lee DK, Horvath TL, Roh GS. Effects of myeloid sirtuin 1 deficiency on hypothalamic neurogranin in mice fed a high-fat diet. Biochemical And Biophysical Research Communications 2018, 508: 123-129. PMID: 30471862, DOI: 10.1016/j.bbrc.2018.11.126.Peer-Reviewed Original ResearchConceptsHigh-fat dietHypothalamic inflammationSIRT1 deletionWT miceInsulin resistanceKO miceFood intakeNeurogranin expressionParvalbumin protein levelsSIRT1 knockout miceAnorexigenic proopiomelanocortinArcuate nucleusVentromedial hypothalamusHigher food intakeHFDKnockout miceLow expressionMiceWeight gainInflammationProtein levelsNeurograninHypothalamusIntakeDiet
2010
Uncoupling Protein-2 Decreases the Lipogenic Actions of Ghrelin
Andrews ZB, Erion DM, Beiler R, Choi CS, Shulman GI, Horvath TL. Uncoupling Protein-2 Decreases the Lipogenic Actions of Ghrelin. Endocrinology 2010, 151: 2078-2086. PMID: 20189996, PMCID: PMC2869261, DOI: 10.1210/en.2009-0850.Peer-Reviewed Original ResearchConceptsBody weight gainGhrelin treatmentWeight gainLipogenic actionsBody weightFat oxidationFat metabolismChronic ghrelin treatmentDaily ip injectionsWhite adipose tissueNegative energy balanceCalorie restriction modelOsmotic minipumpsIP injectionBody fatGhrelinAdipose tissueMiceReactive oxygen speciesExact mechanismUCP2 mRNALipogenesisProtein 2Oxygen speciesTreatment
2003
Coenzyme Q Induces Nigral Mitochondrial Uncoupling and Prevents Dopamine Cell Loss in a Primate Model of Parkinson’s Disease
Horvath TL, Diano S, Leranth C, Garcia-Segura LM, Cowley MA, Shanabrough M, Elsworth JD, Sotonyi P, Roth RH, Dietrich EH, Matthews RT, Barnstable CJ, Redmond DE. Coenzyme Q Induces Nigral Mitochondrial Uncoupling and Prevents Dopamine Cell Loss in a Primate Model of Parkinson’s Disease. Endocrinology 2003, 144: 2757-2760. PMID: 12810526, DOI: 10.1210/en.2003-0163.Peer-Reviewed Original ResearchConceptsDopamine cell lossParkinson's diseaseCell lossShort-term oral administrationMitochondrial uncouplingSubstantia nigraDopamine neuronsTetrahydropyridine (MPTP) administrationCoenzyme QPrimate modelOral administrationDiseaseOxidative stressState 4 respirationMitochondrial uncoupling proteinAdministrationUncoupling proteinUncouplingNeuronsNigraTetrahydropyridine
2002
Uncoupling protein 2 (UCP2) lowers alcohol sensitivity and pain threshold
Horvath B, Spies C, Horvath G, Kox WJ, Miyamoto S, Barry S, Warden CH, Bechmann I, Diano S, Heemskerk J, Horvath TL. Uncoupling protein 2 (UCP2) lowers alcohol sensitivity and pain threshold. Biochemical Pharmacology 2002, 64: 369-374. PMID: 12147287, DOI: 10.1016/s0006-2952(02)01167-x.Peer-Reviewed Original ResearchConceptsCentral nervous systemTemperature sensationNervous systemBasal forebrain areasMajor risk factorAcute ethanol exposureAcute alcohol consumptionImpairment of painPeripheral energy expenditureAbuse of ethanolProtein 2Ethanol-induced toleranceWild-type animalsUCP2 knockoutPain thresholdTime of recoveryInduces toleranceRisk factorsEthanol exposureForebrain areasAxon terminalsNeuronal responsesAcute exposureAlcohol consumptionEnergy homeostasis
2000
Mitochondrial Uncoupling Protein 2 (UCP2) in the Nonhuman Primate Brain and Pituitary*This work was supported by NSF Grant IBN-9728581, NIH Grants NS-36111, MH-59847, RR-00163, HD-29186, and HD-37186.
Diano S, Urbanski H, Horvath B, Bechmann I, Kagiya A, Nemeth G, Naftolin F, Warden C, Horvath T. Mitochondrial Uncoupling Protein 2 (UCP2) in the Nonhuman Primate Brain and Pituitary*This work was supported by NSF Grant IBN-9728581, NIH Grants NS-36111, MH-59847, RR-00163, HD-29186, and HD-37186. Endocrinology 2000, 141: 4226-4238. PMID: 11089557, DOI: 10.1210/endo.141.11.7740.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBrain ChemistryChlorocebus aethiopsCorticotropin-Releasing HormoneGene ExpressionHypothalamusImmunohistochemistryIn Situ HybridizationIon ChannelsLimbic SystemMacaca fascicularisMacaca mulattaMembrane Transport ProteinsMicroscopy, FluorescenceMitochondrial ProteinsNeuropeptide YOxytocinPituitary GlandPituitary Gland, AnteriorPituitary Gland, PosteriorProteinsRNA, MessengerUncoupling Protein 2VasopressinsConceptsUncoupling protein 2Pituitary glandAnterior lobePrimate brainAxonal processesBrain stem regionsNonhuman primate brainSitu hybridization histochemistryMessenger RNACentral autonomicRR-00163Mitochondrial uncoupling protein 2Neuropeptide YPrimate hypothalamusAnterior pituitaryMetabolic disordersRodent brainPosterior lobeHybridization histochemistryPOMC cellsCell bodiesUCP2 expressionRodent dataNovel targetBrain
1999
Estrogen receptor β and progesterone receptor mRNA in the intergeniculate leaflet of the female rat
Horvath T, Diano S, Sakamoto H, Shughrue P, Merchenthaler I. Estrogen receptor β and progesterone receptor mRNA in the intergeniculate leaflet of the female rat. Brain Research 1999, 844: 196-200. PMID: 10536277, DOI: 10.1016/s0006-8993(99)01759-x.Peer-Reviewed Original ResearchConceptsLateral geniculate bodyEstrogen receptor betaLateral geniculate nucleusGeniculate bodyIntergeniculate leafletProgesterone receptorGeniculate nucleusReceptor mRNAReceptor betaDorsal lateral geniculate nucleusVentral lateral geniculate nucleusProgesterone receptor mRNAHypothalamic neuroendocrine cellsEstrogen receptor βHormone receptor mRNADifferent limbicHypothalamic sitesFemale ratsCentral regulationReceptor βLabeled cellsNeuroendocrine mechanismsNeuroendocrine cellsEndocrine mechanismsPopulation of cells