2024
TRPV1 corneal neuralgia mutation: Enhanced pH response, bradykinin sensitization, and capsaicin desensitization
Gualdani R, Barbeau S, Yuan J, Jacobs D, Gailly P, Dib-Hajj S, Waxman S. TRPV1 corneal neuralgia mutation: Enhanced pH response, bradykinin sensitization, and capsaicin desensitization. Proceedings Of The National Academy Of Sciences Of The United States Of America 2024, 121: e2406186121. PMID: 39226353, PMCID: PMC11406256, DOI: 10.1073/pnas.2406186121.Peer-Reviewed Original ResearchConceptsLaser-assisted in situ keratomileusisPhotorefractive keratectomyOcular Surface Disease Index scoreCapsaicin-induced desensitizationPhotorefractive keratectomy enhancementDisease Index scorePhysiological membrane potentialsCorneal neuralgiaTRPV1 variantsCorneal painRefractive surgeryRefractive errorCapsaicin desensitizationPersistent painBradykinin sensitivityNerve injuryM mutationPatch clampChannel activitySurgical techniqueLeftward shiftInflammatory mediatorsM-channelPainIndex scoreDisordered but effective: short linear motifs as gene therapy targets for hyperexcitability disorders
Dib-Hajj S, Waxman S. Disordered but effective: short linear motifs as gene therapy targets for hyperexcitability disorders. Journal Of Clinical Investigation 2024, 134: e182198. PMID: 38949022, PMCID: PMC11213459, DOI: 10.1172/jci182198.Peer-Reviewed Original ResearchConceptsTetrodotoxin-sensitiveHyperexcitability disordersSensory neuronsExcitability of sensory neuronsGene therapy modalitiesPeripheral sensory neuronsVoltage-gated sodiumMinimal side effectsGene therapyInduce analgesiaTherapy modalitiesSide effectsTherapeutic strategiesNav channelsAttenuating excitationIn vivoHyperexcitabilityAnalgesiaNeuronsDisordersPainTherapyGenesBiodistributionRats
2023
Inflammation differentially controls transport of depolarizing Nav versus hyperpolarizing Kv channels to drive rat nociceptor activity
Higerd-Rusli G, Tyagi S, Baker C, Liu S, Dib-Hajj F, Dib-Hajj S, Waxman S. Inflammation differentially controls transport of depolarizing Nav versus hyperpolarizing Kv channels to drive rat nociceptor activity. Proceedings Of The National Academy Of Sciences Of The United States Of America 2023, 120: e2215417120. PMID: 36897973, PMCID: PMC10089179, DOI: 10.1073/pnas.2215417120.Peer-Reviewed Original ResearchConceptsCell biological mechanismsAxonal surfaceLive-cell imagingIon channel traffickingAnterograde transport vesiclesTransport vesiclesInflammatory mediatorsChannel traffickingPlasma membraneVesicular loadingIon channelsKv channelsPotential therapeutic targetPotassium channel KSodium channel NaTraffickingBiological mechanismsTherapeutic targetAbundanceRetrograde transportDistal axonsChannel NaInflammatory painNociceptor activityAxonal transport
2019
Rat NaV1.7 loss-of-function genetic model: Deficient nociceptive and neuropathic pain behavior with retained olfactory function and intra-epidermal nerve fibers
Grubinska B, Chen L, Alsaloum M, Rampal N, Matson D, Yang C, Taborn K, Zhang M, Youngblood B, Liu D, Galbreath E, Allred S, Lepherd M, Ferrando R, Kornecook T, Lehto S, Waxman S, Moyer B, Dib-Hajj S, Gingras J. Rat NaV1.7 loss-of-function genetic model: Deficient nociceptive and neuropathic pain behavior with retained olfactory function and intra-epidermal nerve fibers. Molecular Pain 2019, 15: 1744806919881846. PMID: 31550995, PMCID: PMC6831982, DOI: 10.1177/1744806919881846.Peer-Reviewed Original ResearchConceptsOlfactory functionNav1.7 proteinPain behaviorPain responseRat modelSmall-diameter dorsal root ganglion neuronsNormal intraepidermal nerve fibre densityIntraepidermal nerve fiber densityIntra-epidermal nerve fibersDorsal root ganglion neuronsNeuropathic pain behaviorsNeuropathic pain responsesSpinal nerve ligationNerve fiber densityDorsal root gangliaAction potential firingPeripheral nervous systemEarly postnatal developmentGenetic animal modelsNav1.7 lossNerve ligationPain targetsNeuropathic conditionsGanglion neuronsRoot ganglia
2018
Nonmuscle myosin II isoforms interact with sodium channel alpha subunits
Dash B, Han C, Waxman S, Dib-Hajj S. Nonmuscle myosin II isoforms interact with sodium channel alpha subunits. Molecular Pain 2018, 14: 1744806918788638. PMID: 29956586, PMCID: PMC6052497, DOI: 10.1177/1744806918788638.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAnimalsAnkyrinsBrainCell Line, TransformedElectric StimulationGanglia, SpinalGene Expression RegulationGreen Fluorescent ProteinsHumansImmunoprecipitationMiceMice, Inbred C57BLMice, TransgenicMolecular Motor ProteinsMyosin Heavy ChainsNAV1.6 Voltage-Gated Sodium ChannelNonmuscle Myosin Type IIBPatch-Clamp TechniquesRatsTransfectionConceptsSodium channel alpha subunitND7/23 cellsChannel alpha subunitDorsal root ganglion tissueAlpha subunitMyosin II motor proteinsNonmuscle myosin II isoformsRodent nervous tissueRodent brain tissueSteady-state fast inactivationVoltage-sensitive channelsFast inactivationVoltage-dependent activationSodium channel alphaGanglion tissueIsoform-dependent mannerMyosin II isoformsNervous tissueRecombinant myosinBrain tissueCommon structural motifRamp currentsMotor proteinsCellular excitabilitySodium channels
2013
Wound-healing growth factor, basic FGF, induces Erk1/2-dependent mechanical hyperalgesia
Andres C, Hasenauer J, Ahn H, Joseph EK, Isensee J, Theis FJ, Allgöwer F, Levine JD, Dib-Hajj S, Waxman SG, Hucho T. Wound-healing growth factor, basic FGF, induces Erk1/2-dependent mechanical hyperalgesia. Pain 2013, 154: 2216-2226. PMID: 23867734, DOI: 10.1016/j.pain.2013.07.005.Peer-Reviewed Original ResearchConceptsWound-healing factorsBasic fibroblast growth factorDorsal root gangliaDRG neuronsNociceptive neuronsGrowth factorMechanical hyperalgesiaPain sensitizationGlial cell line-derived neurotrophic factorRat dorsal root gangliaLine-derived neurotrophic factorSingle-cell electrophysiological recordingsLumbar DRG neuronsTranscription-polymerase chain reactionNerve growth factorWound healing growth factorsFibroblast growth factorTime-dependent mannerNeurotrophic factorRoot gangliaPolymerase chain reactionIntradermal injectionNav1.8 channelsBFGF treatmentElectrophysiological recordings
2012
An AnkyrinG-Binding Motif Is Necessary and Sufficient for Targeting Nav1.6 Sodium Channels to Axon Initial Segments and Nodes of Ranvier
Gasser A, Ho TS, Cheng X, Chang KJ, Waxman SG, Rasband MN, Dib-Hajj SD. An AnkyrinG-Binding Motif Is Necessary and Sufficient for Targeting Nav1.6 Sodium Channels to Axon Initial Segments and Nodes of Ranvier. Journal Of Neuroscience 2012, 32: 7232-7243. PMID: 22623668, PMCID: PMC3413458, DOI: 10.1523/jneurosci.5434-11.2012.Peer-Reviewed Original ResearchConceptsReporter proteinAxon initial segmentKinase phosphorylation siteSodium channelsIntracellular loop 2Nodes of RanvierFull-length channelGlutamic acid residuesPhosphorylation sitesMechanism of channelVoltage-gated sodium channelsAcid residuesLoop 2Functional mouseNav1.6 sodium channelsMotifProteinVivo analysisAnkyrinGSomatodendritic compartmentCultured neuronsInitial segmentVivoAction potentialsCells
2009
Role of hippocampal sodium channel Nav1.6 in kindling epileptogenesis
Blumenfeld H, Lampert A, Klein JP, Mission J, Chen MC, Rivera M, Dib‐Hajj S, Brennan AR, Hains BC, Waxman SG. Role of hippocampal sodium channel Nav1.6 in kindling epileptogenesis. Epilepsia 2009, 50: 44-55. PMID: 18637833, PMCID: PMC3741044, DOI: 10.1111/j.1528-1167.2008.01710.x.Peer-Reviewed Original ResearchConceptsHippocampal CA3 neuronsActivity-dependent facilitationCA3 neuronsCommon nervous system disordersSodium channel protein expressionSodium currentCentral nervous system plasticityChannel messenger RNAExpression of Nav1.6Sham-kindled controlsSodium channel Nav1.6Development of kindlingNervous system plasticityNervous system disordersWild-type miceRate of kindlingChannel protein expressionMessenger RNAPatch-clamp recordingsActivity-dependent plasticityPersistent sodium currentIon channel expressionNormal hippocampal functionAction potential generationAbnormal plasticity
2003
The pentapeptide QYNAD does not block voltage-gated sodium channels
Cummins T, Renganathan M, Herzog R, Dib-Hajj S, Waxman S, Stys P, Horn R. The pentapeptide QYNAD does not block voltage-gated sodium channels. Neurology 2003, 60: 1871-1872. PMID: 12796562, DOI: 10.1212/wnl.60.11.1871-a.Peer-Reviewed Original Research
2001
Glycosylation Alters Steady-State Inactivation of Sodium Channel Nav1.9/NaN in Dorsal Root Ganglion Neurons and Is Developmentally Regulated
Tyrrell L, Renganathan M, Dib-Hajj S, Waxman S. Glycosylation Alters Steady-State Inactivation of Sodium Channel Nav1.9/NaN in Dorsal Root Ganglion Neurons and Is Developmentally Regulated. Journal Of Neuroscience 2001, 21: 9629-9637. PMID: 11739573, PMCID: PMC6763018, DOI: 10.1523/jneurosci.21-24-09629.2001.Peer-Reviewed Original ResearchMeSH KeywordsAgingAnimalsAnimals, NewbornAntibody SpecificityAxotomyCell MembraneCells, CulturedFemaleGanglia, SpinalGlycosylationImmunoblottingMembrane PotentialsN-Acetylneuraminic AcidNAV1.9 Voltage-Gated Sodium ChannelNeuraminidaseNeuronsNeuropeptidesPatch-Clamp TechniquesRatsRats, Sprague-DawleySciatic NerveSodiumSodium ChannelsSubcellular FractionsTetrodotoxinTrigeminal GanglionConceptsImmunoreactive proteinMembrane fractionAdult DRG neuronsTranscription-PCR analysisHigh molecular weight immunoreactive proteinTheoretical molecular weightWhole-cell patch-clamp analysisLong transcriptsGlycosylation statePatch-clamp analysisAdult tissuesLarge proteinsLimited glycosylationEnzymatic deglycosylationExtensive glycosylationState of glycosylationProteinAdult dorsal root gangliaGlycosylationNative neuronsDevelopmental changesInactivationMembrane preparationsDRG neuronsDorsal root gangliaDirect Interaction with Contactin Targets Voltage-gated Sodium Channel Nav1.9/NaN to the Cell Membrane*
Liu C, Dib-Hajj S, Black J, Greenwood J, Lian Z, Waxman S. Direct Interaction with Contactin Targets Voltage-gated Sodium Channel Nav1.9/NaN to the Cell Membrane*. Journal Of Biological Chemistry 2001, 276: 46553-46561. PMID: 11581273, DOI: 10.1074/jbc.m108699200.Peer-Reviewed Original ResearchConceptsDorsal root gangliaRoot gangliaSodium channelsSmall sensory neuronsVoltage-gated sodium channelsTrigeminal ganglionNerve endingsC-fibersSensory neuronsNeuron somataChinese hamster ovary cell lineDifferent physiological propertiesGangliaHamster ovary cell lineNeuronal membranesChinese hamster ovary cellsOvary cell lineProtein complexesSurface expressionHamster ovary cellsCell linesAxonsSurface localizationCell membraneOvary cellsβ1 adducin gene expression in DRG is developmentally regulated and is upregulated by glial-derived neurotrophic factor and nerve growth factor
Ghassemi F, Dib-Hajj S, Waxman S. β1 adducin gene expression in DRG is developmentally regulated and is upregulated by glial-derived neurotrophic factor and nerve growth factor. Brain Research 2001, 90: 118-124. PMID: 11406290, DOI: 10.1016/s0169-328x(01)00091-2.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCalmodulin-Binding ProteinsCells, CulturedCytoskeletonGanglia, SpinalGene Expression ProfilingGene Expression Regulation, DevelopmentalGlial Cell Line-Derived Neurotrophic FactorNerve Growth FactorNerve Growth FactorsNerve Tissue ProteinsNeurons, AfferentNeuroprotective AgentsRatsRats, Sprague-DawleyReverse Transcriptase Polymerase Chain ReactionConceptsGlial-derived neurotrophic factorReal-time reverse transcription-polymerase chain reactionNeurotrophic factorTrigeminal ganglionDRG culturesRat DRGGrowth factorDorsal root ganglion culturesAdult rat DRGRat dorsal root ganglion culturesSuperior cervical ganglionReverse transcription-polymerase chain reactionExpression levelsNerve growth factorNon-neural tissuesDRG tissueCervical ganglionSciatic nervePolymerase chain reactionGanglion culturesAdducin geneLevel of expressionGangliaLow expression levelsGene expressionFibroblast Growth Factor Homologous Factor 1B Binds to the C Terminus of the Tetrodotoxin-resistant Sodium Channel rNav1.9a (NaN)*
Liu C, Dib-Hajj S, Waxman S. Fibroblast Growth Factor Homologous Factor 1B Binds to the C Terminus of the Tetrodotoxin-resistant Sodium Channel rNav1.9a (NaN)*. Journal Of Biological Chemistry 2001, 276: 18925-18933. PMID: 11376006, DOI: 10.1074/jbc.m101606200.Peer-Reviewed Original ResearchMeSH Keywords3T3 CellsAmino Acid SequenceAnimalsBlotting, WesternCell LineConserved SequenceCytoplasmDNA, ComplementaryDrug ResistanceFibroblast Growth FactorsGene LibraryGlutathione TransferaseGrowth SubstancesHumansMiceModels, BiologicalMolecular Sequence DataNAV1.9 Voltage-Gated Sodium ChannelNeuropeptidesPlasmidsProtein BindingProtein Structure, TertiaryRatsReverse Transcriptase Polymerase Chain ReactionRNASequence Analysis, DNASequence Homology, Amino AcidSodium ChannelsTetrodotoxinTissue DistributionTwo-Hybrid System TechniquesConceptsC-terminusTerminal polypeptideTwo-hybrid screenMammalian cell linesC-terminal regionN-terminal 5Fibroblast growth factor family membersFibroblast growth factor (FGF) familySodium channelsAmino acid residuesFactor family membersGrowth factor family membersCytoplasmic domainFirst growth factorGrowth factor familyFactor familyIntracellular segmentAcid residuesCell membraneFunctional significanceChannel complexDirect interactionCell linesTerminusPolypeptide
2000
Localization of the tetrodotoxin-resistant sodium channel NaN in nociceptors
Fjell J, Hjelmström P, Hormuzdiar W, Milenkovic M, Aglieco F, Tyrrell L, Dib-Hajj S, Waxman S, Black J. Localization of the tetrodotoxin-resistant sodium channel NaN in nociceptors. Neuroreport 2000, 11: 199-202. PMID: 10683857, DOI: 10.1097/00001756-200001170-00039.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsAxonsCorneaFemaleGanglia, SpinalImage Processing, Computer-AssistedImmunohistochemistryMolecular Sequence DataMyelin SheathNAV1.9 Voltage-Gated Sodium ChannelNerve FibersNeurons, AfferentNeuropeptidesNociceptorsPresynaptic TerminalsRanvier's NodesRatsRats, Sprague-DawleySciatic NerveSodium ChannelsTetrodotoxinConceptsSciatic nerveSmall diameter primary sensory neuronsSodium currentTetrodotoxin-resistant sodium channelsTetrodotoxin-resistant sodium currentDorsal root ganglion neuronsSodium channelsPrimary sensory neuronsAxonal sodium currentsNodes of RanvierNociceptive transmissionChannel immunoreactivityGanglion neuronsUnmyelinated fibersAxon terminalsSensory neuronsNerveImmunoreactivityAxonsNeuronsSpecific peptidesNociceptorsIB4CorneaAntibodies
1999
Plasticity of sodium channel expression in DRG neurons in the chronic constriction injury model of neuropathic pain
Dib-Hajj S, Fjell J, Cummins TR, Zheng Z, Fried K, LaMotte R, Black JA, Waxman S. Plasticity of sodium channel expression in DRG neurons in the chronic constriction injury model of neuropathic pain. Pain 1999, 83: 591-600. PMID: 10568868, DOI: 10.1016/s0304-3959(99)00169-4.Peer-Reviewed Original ResearchConceptsTTX-R sodium channelsChronic constriction injury modelDRG neuronsSodium currentSodium channelsNeuropathic painInjury modelAxotomized dorsal root ganglion (DRG) neuronsSmall-diameter DRG neuronsTTX-R sodium currentsDorsal root ganglion neuronsTTX-S currentsSodium channel expressionGanglion neuronsSciatic nerveChannel expressionSodium channel transcriptsNeuronsNa currentPainChannel transcriptsSignificant changesLevels of transcriptsHyperalgesiaPrevious studiesCoding Sequence, Genomic Organization, and Conserved Chromosomal Localization of the Mouse Gene Scn11a Encoding the Sodium Channel NaN
Dib-Hajj S, Tyrrell L, Escayg A, Wood P, Meisler M, Waxman S. Coding Sequence, Genomic Organization, and Conserved Chromosomal Localization of the Mouse Gene Scn11a Encoding the Sodium Channel NaN. Genomics 1999, 59: 309-318. PMID: 10444332, DOI: 10.1006/geno.1999.5890.Peer-Reviewed Original ResearchConceptsSodium channel geneChannel genesConserved linkage groupMouse chromosome 9Sodium channel alphaAlternative exon 5Amino acid levelsGenomic organizationChromosomal localizationLinkage groupsHuman genesHuman SCN5ACoding sequenceCommon lineageChannel alphaChromosome 9TTX-R sodium channelsGenesSmall-diameter sensory neuronsTransduction of painDorsal root gangliaHigh-threshold nociceptorsExon 5SCN11A geneSodium channelsDifferential role of GDNF and NGF in the maintenance of two TTX-resistant sodium channels in adult DRG neurons
Fjell J, Cummins T, Dib-Hajj S, Fried K, Black J, Waxman S. Differential role of GDNF and NGF in the maintenance of two TTX-resistant sodium channels in adult DRG neurons. Brain Research 1999, 67: 267-282. PMID: 10216225, DOI: 10.1016/s0169-328x(99)00070-4.Peer-Reviewed Original ResearchMeSH KeywordsAge FactorsAnimalsAxotomyCell SizeCell SurvivalDown-RegulationDrug ResistanceFemaleGanglia, SpinalGene ExpressionGlial Cell Line-Derived Neurotrophic FactorLectinsMembrane PotentialsNAV1.8 Voltage-Gated Sodium ChannelNAV1.9 Voltage-Gated Sodium ChannelNerve Growth FactorsNerve Tissue ProteinsNeurons, AfferentNeuropeptidesPatch-Clamp TechniquesRatsRats, Sprague-DawleyRNA, MessengerSciatic NerveSodium ChannelsTetrodotoxinUp-RegulationConceptsTTX-R sodium currentsSNS/PN3Small DRG neuronsTTX-R currentsDRG neuronsIB4- neuronsSodium currentElectrophysiological propertiesSmall dorsal root ganglion neuronsDorsal root ganglion neuronsAxotomized DRG neuronsTTX-S currentsWhole-cell patch-clamp studiesTTX-resistant sodium channelsSciatic nerve transectionAdult DRG neuronsDifferent electrophysiological propertiesNear-normal levelsPatch-clamp studiesNerve transectionGDNF treatmentNeurotrophins NGFGanglion neuronsIsolectin IB4Exogenous NGF
1998
Glial cells have heart: rH1 Na+ channel mRNA and protein in spinal cord astrocytes
Black JA, Dib‐Hajj S, Cohen S, Hinson AW, Waxman SG. Glial cells have heart: rH1 Na+ channel mRNA and protein in spinal cord astrocytes. Glia 1998, 23: 200-208. PMID: 9633805, DOI: 10.1002/(sici)1098-1136(199807)23:3<200::aid-glia3>3.0.co;2-8.Peer-Reviewed Original ResearchConceptsTTX-resistant currentStellate astrocytesSpinal cordCultured spinal cord astrocytesVoltage-sensitive sodium currentsChannel mRNASodium currentDorsal root ganglion neuronsSodium channel immunoreactivityRT-PCRSpinal cord astrocytesTTX-sensitive currentsIntact spinal cordSpinal cord culturesReverse transcription-polymerase chain reactionSodium channel mRNASodium channel expressionTranscription-polymerase chain reactionTTX-resistant channelsPolyclonal antibodiesChannel immunoreactivityP7 ratsGanglion neuronsPolymerase chain reactionChannel antibodiesSNS Na+ channel expression increases in dorsal root ganglion neurons in the carrageenan inflammatory pain model
Tanaka M, Cummins T, Ishikawa K, Dib-Hajj S, Black J, Waxman S. SNS Na+ channel expression increases in dorsal root ganglion neurons in the carrageenan inflammatory pain model. Neuroreport 1998, 9: 967-972. PMID: 9601651, DOI: 10.1097/00001756-199804200-00003.Peer-Reviewed Original ResearchConceptsSmall DRG neuronsDorsal root ganglion neuronsInjection of carrageenanDRG neuronsInflamed limbGanglion neuronsSodium currentTTX-R sodium currentsTetrodotoxin-resistant sodium currentInflammatory pain modelDevelopment of hyperexcitabilitySodium channel expressionPatch-clamp recordingsInflammatory painPain modelChronic painCarrageenan injectionNociceptive cellsContralateral sideNaive ratsChannel expressionProjection fieldsMRNA expressionNeuronsSodium channels
1997
Schwann cells modulate sodium channel expression in spinal sensory neurons in vitro
Hinson AW, Gu XQ, Dib‐Hajj S, Black JA, Waxman SG. Schwann cells modulate sodium channel expression in spinal sensory neurons in vitro. Glia 1997, 21: 339-349. PMID: 9419009, DOI: 10.1002/(sici)1098-1136(199712)21:4<339::aid-glia1>3.0.co;2-z.Peer-Reviewed Original ResearchConceptsDRG neuronsSC-conditioned mediumSodium channel alphaE15 ratsSodium channelsChannel alphaSodium channel immunoreactivitySpinal sensory neuronsBeta2 subunit mRNASodium channel mRNASodium channel expressionFunctional sodium channelsSodium current densityBeta-subunit mRNAChannel immunoreactivityBeta2 mRNASensory neuronsClamp recordingsChannel expressionChannel mRNAIsoform-specific riboprobesNeuronsBeta1RatsHybridization signals