2007
Schwann cells and their precursors for repair of central nervous system myelin
Kocsis JD, Waxman SG. Schwann cells and their precursors for repair of central nervous system myelin. Brain 2007, 130: 1978-1980. PMID: 17626033, DOI: 10.1093/brain/awm161.Peer-Reviewed Original Research
2006
Axonal conduction and injury in multiple sclerosis: the role of sodium channels
Waxman SG. Axonal conduction and injury in multiple sclerosis: the role of sodium channels. Nature Reviews Neuroscience 2006, 7: 932-941. PMID: 17115075, DOI: 10.1038/nrn2023.Peer-Reviewed Original ResearchConceptsAxonal degenerationSodium channelsChannel isoformsDistinct pathophysiological rolesKey PointsMultiple sclerosisMultiple neurological deficitsRelapsing-remitting courseRestoration of conductionDegeneration of axonsCerebellar Purkinje neuronsVoltage-gated sodium channelsContext of demyelinationNeurological deficitsProgressive courseMultiple sclerosisAxonal conductionDisease progressionNav1.8 channelsConduction failurePathophysiological rolePurkinje neuronsCNS axonsFiring patternsLoss of coordinationAberrant expression
2000
Localization of the tetrodotoxin-resistant sodium channel NaN in nociceptors
Fjell J, Hjelmström P, Hormuzdiar W, Milenkovic M, Aglieco F, Tyrrell L, Dib-Hajj S, Waxman S, Black J. Localization of the tetrodotoxin-resistant sodium channel NaN in nociceptors. Neuroreport 2000, 11: 199-202. PMID: 10683857, DOI: 10.1097/00001756-200001170-00039.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsAxonsCorneaFemaleGanglia, SpinalImage Processing, Computer-AssistedImmunohistochemistryMolecular Sequence DataMyelin SheathNAV1.9 Voltage-Gated Sodium ChannelNerve FibersNeurons, AfferentNeuropeptidesNociceptorsPresynaptic TerminalsRanvier's NodesRatsRats, Sprague-DawleySciatic NerveSodium ChannelsTetrodotoxinConceptsSciatic nerveSmall diameter primary sensory neuronsSodium currentTetrodotoxin-resistant sodium channelsTetrodotoxin-resistant sodium currentDorsal root ganglion neuronsSodium channelsPrimary sensory neuronsAxonal sodium currentsNodes of RanvierNociceptive transmissionChannel immunoreactivityGanglion neuronsUnmyelinated fibersAxon terminalsSensory neuronsNerveImmunoreactivityAxonsNeuronsSpecific peptidesNociceptorsIB4CorneaAntibodies
1998
Transplanted Olfactory Ensheathing Cells Remyelinate and Enhance Axonal Conduction in the Demyelinated Dorsal Columns of the Rat Spinal Cord
Imaizumi T, Lankford K, Waxman S, Greer C, Kocsis J. Transplanted Olfactory Ensheathing Cells Remyelinate and Enhance Axonal Conduction in the Demyelinated Dorsal Columns of the Rat Spinal Cord. Journal Of Neuroscience 1998, 18: 6176-6185. PMID: 9698311, PMCID: PMC2605360, DOI: 10.1523/jneurosci.18-16-06176.1998.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAxonsElectrophysiologyFemaleMyelin SheathNeural ConductionNeuronsOlfactory NerveRatsRats, WistarSpinal CordConceptsDorsal column axonsRat spinal cordSpinal cordRemyelinated axonsDorsal columnsAdult rat spinal cordExtent of remyelinationTransplantation of OECsSpinal cord lesionsCell injection siteQuantitative histological analysisFunctional remyelinationCord lesionsAxonal conductionNeonatal ratsFocal injectionsConduction blockSchwann cellsConduction velocityInjection siteElectrophysiological propertiesAction potentialsAxonsHistological analysisTransplantationAxon Conduction and Survival in CNS White Matter During Energy Deprivation: A Developmental Study
Fern R, Davis P, Waxman S, Ransom B. Axon Conduction and Survival in CNS White Matter During Energy Deprivation: A Developmental Study. Journal Of Neurophysiology 1998, 79: 95-105. PMID: 9425180, DOI: 10.1152/jn.1998.79.1.95.Peer-Reviewed Original ResearchConceptsAnoxia/aglycemiaCompound action potentialWithdrawal of oxygenOptic nerveCNS white matterWhite matterIsolated rat optic nerveEvoked compound action potentialAdult optic nerveOptic nerve functionRat optic nervePostnatal day 10Permanent lossMin of glucoseEnergy deprivationWithdrawal of glucoseGlucose withdrawalNerve functionAstrocytic glycogenAxon conductionHeightened metabolic activityAdult ratsAglycemiaIrreversible injuryNerve
1993
Molecular dissection of the myelinated axon
Waxman S, Ritchie J. Molecular dissection of the myelinated axon. Annals Of Neurology 1993, 33: 121-136. PMID: 7679565, DOI: 10.1002/ana.410330202.Peer-Reviewed Original ResearchConceptsMyelinated axonsInternodal axon membraneDemyelinated axonsCentral nervous system white matterNervous system white matterRestoration of conductionImportant therapeutic approachSchwann cell processesWhite matter axonsInflux of Ca2Important pathophysiological implicationsGlial cell processesAction potential conductionAxonal excitabilityGlial cellsAnoxic injuryMyelinated fibersTherapeutic approachesAstrocyte processesCell processesPathophysiological implicationsRepetitive firingWhite matterNeurological disordersAction potentials
1991
Non-synaptic mechanisms of Ca2+-mediated injury in CNS white matter
Waxman S, Ransom B, Stys P. Non-synaptic mechanisms of Ca2+-mediated injury in CNS white matter. Trends In Neurosciences 1991, 14: 461-468. PMID: 1722366, DOI: 10.1016/0166-2236(91)90046-w.Peer-Reviewed Original Research
1990
Anoxic injury of mammalian central white matter: Decreased susceptibility in myelin‐deficient optic nerve
Waxman S, Davis P, Black J, Ransom B. Anoxic injury of mammalian central white matter: Decreased susceptibility in myelin‐deficient optic nerve. Annals Of Neurology 1990, 28: 335-340. PMID: 2241117, DOI: 10.1002/ana.410280306.Peer-Reviewed Original ResearchConceptsCompound action potentialOptic nerveCentral white matterMinutes of anoxiaAction potentialsMD ratsWhite matterMammalian central white matterSupramaximal compound action potentialCompound action potential amplitudeAction potential amplitudeNeonatal optic nerveRat optic nerveControl optic nervesDistinct action potentialsWhite matter tractsUnaffected male littermatesAnoxic injuryMale littermatesDays postnatalNervePotential amplitudeOligodendroglial proliferationEffects of anoxiaAdult pattern
1987
Physiological effects of 4‐aminopyridine on demyelinated mammalian motor and sensory fibers
Bowe C, Kocsis J, Targ E, Waxman S. Physiological effects of 4‐aminopyridine on demyelinated mammalian motor and sensory fibers. Annals Of Neurology 1987, 22: 264-268. PMID: 2821876, DOI: 10.1002/ana.410220212.Peer-Reviewed Original ResearchConceptsSensory fibersClinical trialsAction potentialsPotassium channel blockadeDorsal root axonsCompound action potentialDorsal spinal rootsSingle action potentialMammalian motorIntrathecal injectionMultiple sclerosisSensory dysfunctionVentral rootsSpinal rootsNeuromuscular disordersSpecific fiber typesElectrophysiological responsesSingle stimulusPhysiological effectsTrialsFiber typesResponseParesthesiaSclerosisDysfunctionFilipin-cholesterol binding in CNS axons prior to myelination: evidence for microheterogeneity in premyelinated axolemma
Fields R, Black J, Waxman S. Filipin-cholesterol binding in CNS axons prior to myelination: evidence for microheterogeneity in premyelinated axolemma. Brain Research 1987, 404: 21-32. PMID: 3567567, DOI: 10.1016/0006-8993(87)91351-5.Peer-Reviewed Original ResearchChapter 11 Rules governing membrane reorganization and axon—glial interactions during the development of myelinated fibers
Waxman S. Chapter 11 Rules governing membrane reorganization and axon—glial interactions during the development of myelinated fibers. Progress In Brain Research 1987, 71: 121-141. PMID: 3588937, DOI: 10.1016/s0079-6123(08)61819-1.Peer-Reviewed Original Research
1986
Effects of delayed myelination by oligodendrocytes and Schwann cells on the macromolecular structure of axonal membrane in rat spinal cord
Black J, Waxman S, Sims T, Gilmore S. Effects of delayed myelination by oligodendrocytes and Schwann cells on the macromolecular structure of axonal membrane in rat spinal cord. Brain Cell Biology 1986, 15: 745-761. PMID: 3819778, DOI: 10.1007/bf01625192.Peer-Reviewed Original ResearchConceptsDorsal funiculusSpinal cordSchwann cellsMyelin sheathAxonal membraneControl spinal cordsLumbosacral spinal cordSchwann cell ensheathmentRat spinal cordThin myelin sheathsDorsal spinal rootsDays of ageVoltage-sensitive sodium channelsSubsequent myelinationSpinal rootsMyelinated fibersLarge axonsCordMyelinationOligodendrocytesFuniculusSodium channelsIMP densityE-face intramembranous particlesInternodal axolemmaMolecular structure of the axolemma of developing axons following altered gliogenesis in rat optic nerve
Black J, Waxman S. Molecular structure of the axolemma of developing axons following altered gliogenesis in rat optic nerve. Developmental Biology 1986, 115: 301-312. PMID: 2423398, DOI: 10.1016/0012-1606(86)90251-4.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAxonsAzacitidineFreeze FracturingMicroscopy, ElectronMyelin SheathNeurogliaOptic NerveRatsConceptsRat optic nerveOptic nerveMyelinated fibersLarge caliber fibersAxonal diameterNeonatal rat optic nerveP-face IMP densityControl optic nervesDays of ageNodes of RanvierUnensheathed axonsGlial ensheathmentSystemic injectionNerveAxonsGliogenesisIMP densityAxolemmaE-face particlesCell associationIntramembranous particlesRatsOligodendrocytesMyelinEnsheathment
1985
Myelin sheath remodelling in regenerated rat sciatic nerve
Hildebrand C, Kocsis J, Berglund S, Waxman S. Myelin sheath remodelling in regenerated rat sciatic nerve. Brain Research 1985, 358: 163-170. PMID: 2416385, DOI: 10.1016/0006-8993(85)90960-6.Peer-Reviewed Original ResearchConceptsRat sciatic nerveSciatic nerveRegenerated nervesAdult rat sciatic nerveRegenerated rat sciatic nerveNormal control nervesLight microscopic examinationAction potential waveformCrush lesionMonths survivalNerve segmentsControl nervesSame nerveIndividual nervesNerve fibersNerveShort sheathMyelin layersMyelin sheathPotassium channelsMicroscopic examinationAxo-glial relations in the retina-optic nerve junction of the adult rat: freeze-fracture observations on axon membrane structure
Black J, Waxman S, Hildebrand C. Axo-glial relations in the retina-optic nerve junction of the adult rat: freeze-fracture observations on axon membrane structure. Brain Cell Biology 1985, 14: 887-907. PMID: 3831245, DOI: 10.1007/bf01224803.Peer-Reviewed Original ResearchAxo-glial relations in the retina-optic nerve junction of the adult rat: electron-microscopic observations
Hildebrand C, Remahl S, Waxman S. Axo-glial relations in the retina-optic nerve junction of the adult rat: electron-microscopic observations. Brain Cell Biology 1985, 14: 597-617. PMID: 4067610, DOI: 10.1007/bf01200800.Peer-Reviewed Original ResearchConceptsNerve junctionAdult ratsAstrocytic processesDeficient blood-brain barrierEctopic Schwann cellsFibrous astrocytic processesBlood-brain barrierAxo-glial contactsMyelination of axonsNumerous pinocytotic vesiclesTypical oligodendrocytesGlial ensheathmentGlial cellsUnmyelinated segmentsGlia limitansSchwann cellsUnmyelinated axonsWide perivascular spacesPia materPerivascular spacesOligodendroglial cellsDeficient proliferationUnmyelinated partMyelin sheathSame axonPerinodal astrocytic processes at nodes of ranvier in developing normal and glial cell deficient rat spinal cord
Sims T, Waxman S, Black J, Gilmore S. Perinodal astrocytic processes at nodes of ranvier in developing normal and glial cell deficient rat spinal cord. Brain Research 1985, 337: 321-331. PMID: 4027576, DOI: 10.1016/0006-8993(85)90069-1.Peer-Reviewed Original ResearchConceptsPerinodal astrocytic processesLumbar spinal cordSpinal cordGlial cellsAstrocytic processesNodes of RanvierThird postnatal dayRat spinal cordSpinal cord axonsIrradiated spinal cordStages of myelinationAstrocyte involvementVentral funiculusNeuronal elementsPostnatal dayOligodendrocyte populationCentral myelinCordAstrocytesProfound reductionMyelin sheathAxonsRatsNodal axolemmaPresumptive roleRat optic nerve: Disruption of gliogenesis with 5-azacytidine during early postnatal development
Ransom B, Yamate C, Black J, Waxman S. Rat optic nerve: Disruption of gliogenesis with 5-azacytidine during early postnatal development. Brain Research 1985, 337: 41-49. PMID: 2408709, DOI: 10.1016/0006-8993(85)91607-5.Peer-Reviewed Original ResearchConceptsOptic nerveGlial cellsOptic nerve axonsRat optic nerveCompound action potentialEarly postnatal developmentDays of ageOlder nervesNeonatal treatmentBrain extracellular spaceNeuroglial interactionsElectrophysiological studiesNervePostnatal developmentAction potentialsNerve axonsExcitability propertiesMarked reductionMyelin formationGliogenesisMitotic inhibitorsIonic homeostasisExtracellular spaceAgeAnimalsGlial proliferation in the irradiated rat spinal cord
Sims T, Waxman S, Gilmore S. Glial proliferation in the irradiated rat spinal cord. Acta Neuropathologica 1985, 68: 169-172. PMID: 4072625, DOI: 10.1007/bf00688641.Peer-Reviewed Original ResearchConceptsSpinal cordRat spinal cordPost-irradiation intervalsGlial proliferationIncorporation of3H-thymidineGlial cellsAdjacent thin sectionsWhite matterThick plastic sectionsCell bodiesMyelin sheathVentral halfCordOf3H-thymidineAstrogliaIrregular outlinePresent studyMitotic cellsCellsPlastic sectionsBundles of filamentsRatsMyelinationOligodendrocytesLigature‐induced injury in peripheral nerve: Electrophysiological observations on changes in action potential characteristics following blockade of potassium conductance
Waxman S, Kocsis J, Eng D. Ligature‐induced injury in peripheral nerve: Electrophysiological observations on changes in action potential characteristics following blockade of potassium conductance. Muscle & Nerve 1985, 8: 85-92. PMID: 2414652, DOI: 10.1002/mus.880080202.Peer-Reviewed Original ResearchConceptsAction potentialsRepetitive firingSingle stimulusPotassium channelsCompound action potentialRat sciatic nerveAction potential propertiesWhole-nerve responseAction potential characteristicsIntra-axonal recordingsAction potential waveformNerve segmentsSciatic nerveNerve responsesPeripheral nervesInjury siteMyelinated fibersLater spikesElectrophysiological observationsNerveRefractory periodFiring patternsPotassium conductancePotential waveformInitial spike