1988
Unmyelinated and myelinated axon membrane from rat corpus callosum: differences in macromolecular structure
Waxman S, Black J. Unmyelinated and myelinated axon membrane from rat corpus callosum: differences in macromolecular structure. Brain Research 1988, 453: 337-343. PMID: 3401771, DOI: 10.1016/0006-8993(88)90174-6.Peer-Reviewed Original Research
1983
Effects of 4-aminopyridine on rapidly and slowly conducting axons of rat corpus callosum
Preston R, Waxman S, Kocsis J. Effects of 4-aminopyridine on rapidly and slowly conducting axons of rat corpus callosum. Experimental Neurology 1983, 79: 808-820. PMID: 6825765, DOI: 10.1016/0014-4886(83)90044-4.Peer-Reviewed Original ResearchMeSH Keywords4-AminopyridineAction PotentialsAminopyridinesAnimalsAxonsCorpus CallosumElectric ConductivityFemaleRatsRats, Inbred StrainsConceptsRat corpus callosumCallosal fibersCerebral axonsNerve fibersCorpus callosumMammalian peripheral nerve fibersNegative waveVoltage-dependent potassium currentsSecond negative waveNon-myelinated nerve fibresPeripheral nerve fibersField potentialsShort-latency wavesFirst negative waveCallosal stimulationPotassium blockersPotassium currentAction potentialsPeripheral fibersCallosumRecording electrodesMembrane repolarizationAxonsFunctional organizationComparable differences
1981
Freeze-fracture ultrastructure of rat C.N.S. and P.N.S. nonmyelinated axolemma
Black J, Foster R, Waxman S. Freeze-fracture ultrastructure of rat C.N.S. and P.N.S. nonmyelinated axolemma. Brain Cell Biology 1981, 10: 981-993. PMID: 7310484, DOI: 10.1007/bf01258525.Peer-Reviewed Original ResearchEffects of variations in temperature on impulse conduction along nonmyelinated axons in the mammalian brain
Swadlow H, Waxman S, Weyand T. Effects of variations in temperature on impulse conduction along nonmyelinated axons in the mammalian brain. Experimental Neurology 1981, 71: 383-389. PMID: 7449905, DOI: 10.1016/0014-4886(81)90096-0.Peer-Reviewed Original ResearchPopulation response characteristics of fiber tracts in central white matter.
Kocsis J, Malenka R, Connors B, Waxman S, Cummins K. Population response characteristics of fiber tracts in central white matter. Progress In Clinical And Biological Research 1981, 52: 17-32. PMID: 7232442.Peer-Reviewed Original Research
1980
Lysophosphatidyl choline-induced focal demyelination in the rabbit corpus callosum Electron-microscopic observations
Foster R, Kocsis J, Malenka R, Waxman S. Lysophosphatidyl choline-induced focal demyelination in the rabbit corpus callosum Electron-microscopic observations. Journal Of The Neurological Sciences 1980, 48: 221-231. PMID: 7431040, DOI: 10.1016/0022-510x(80)90202-6.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBrain DiseasesCorpus CallosumDemyelinating DiseasesFemaleLysophosphatidylcholinesMicroscopy, ElectronRabbitsConceptsCorpus callosumLysophosphatidyl cholineFocal demyelinating lesionsCentral nervous systemDemyelinating lesionsLPC injectionDemyelinated axonsFocal demyelinationElectron microscopic examinationElectrophysiological studiesNervous systemElectrophysiological controlEarly signsCallosumAxonsDemyelinationInjectionElectron microscopic observationsRemyelinationPressure injectionLesionsSmall-Diameter Nonmyelinated Axons in the Primate Corpus Callosum
Swadlow H, Waxman S, Geschwind N. Small-Diameter Nonmyelinated Axons in the Primate Corpus Callosum. JAMA Neurology 1980, 37: 114-115. PMID: 6766715, DOI: 10.1001/archneur.1980.00500510072016.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAxonsCorpus CallosumHaplorhiniMacaca fascicularisMacaca mulattaNerve Fibers, Myelinated
1979
Lysophosphatidyl choline-induced focal demyelination in the rabbit corpus callosum Light-microscopic observations
Waxman S, Kocsis J, Nitta K. Lysophosphatidyl choline-induced focal demyelination in the rabbit corpus callosum Light-microscopic observations. Journal Of The Neurological Sciences 1979, 44: 45-53. PMID: 512691, DOI: 10.1016/0022-510x(79)90221-1.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCorpus CallosumDemyelinating DiseasesDisease Models, AnimalFemaleLysophosphatidylcholinesRabbitsCommissural Transmission in Humans
Swadlow H, Geschwind N, Waxman S. Commissural Transmission in Humans. Science 1979, 204: 530-531. PMID: 432661, DOI: 10.1126/science.432661.Peer-Reviewed Original Research
1978
The cells of origin of the corpus callosum in rabbit visual cortex
Swadlow H, Weyand T, Waxman S. The cells of origin of the corpus callosum in rabbit visual cortex. Brain Research 1978, 156: 129-134. PMID: 81092, DOI: 10.1016/0006-8993(78)90088-4.Peer-Reviewed Original ResearchCharacteristics of interhemispheric impulse conduction between prelunate gyri of the rhesus monkey
Swadlow H, Rosene D, Waxman S. Characteristics of interhemispheric impulse conduction between prelunate gyri of the rhesus monkey. Experimental Brain Research 1978, 33: 455-467. PMID: 103739, DOI: 10.1007/bf00235567.Peer-Reviewed Original ResearchConceptsCallosal efferent neuronsPrior impulseAxonal conduction velocityConduction velocityPrelunate gyrusEfferent neuronsCorpus callosumSupernormal periodRhesus monkeysCell of originRelative refractory periodSubnormal periodAntidromic activationAntidromic latenciesElectrical stimulationImpulse conductionRefractory periodElectrophysiological techniquesGyrusCallosumMonkeysExcitabilityNeuronsPeriodSpleniumLatency variability and the identification of antidromically activated neurons in mammalian brain
Swadlow H, Waxman S, Rosene D. Latency variability and the identification of antidromically activated neurons in mammalian brain. Experimental Brain Research 1978, 32: 439-443. PMID: 98342, DOI: 10.1007/bf00238715.Peer-Reviewed Original Research
1977
The conduction properties of axons in central white matter
Waxman S, Swadlow H. The conduction properties of axons in central white matter. Progress In Neurobiology 1977, 8: 297-324. PMID: 335441, DOI: 10.1016/0301-0082(77)90009-0.Peer-Reviewed Original Research
1976
Ultrastructure of visual callosal axons in the rabbit
Waxman S, Swadlow H. Ultrastructure of visual callosal axons in the rabbit. Experimental Neurology 1976, 53: 115-127. PMID: 964332, DOI: 10.1016/0014-4886(76)90287-9.Peer-Reviewed Original ResearchVariations in conduction velocity and excitability following single and multiple impulses of visual callosal axons in the rabbit
Swadlow H, Waxman S. Variations in conduction velocity and excitability following single and multiple impulses of visual callosal axons in the rabbit. Experimental Neurology 1976, 53: 128-150. PMID: 964334, DOI: 10.1016/0014-4886(76)90288-0.Peer-Reviewed Original ResearchConceptsCallosal axonsAntidromic latenciesConduction velocityContralateral cortical stimulationMain axon trunkLatency decreaseCorticotectal axonsAntidromic activationAxon trunkCortical stimulationTest stimuliAwake rabbitsConditioning stimulusCell bodiesAxonsControl valuesThreshold shiftDifferent axonsConditioning pulseAppropriate intervalsPresent studyRabbitsDurationStimuliLatencyMorphology and physiology of visual callosal axons: evidence for a supernormal period in central myelinated axons
Waxman S, Swadlow H. Morphology and physiology of visual callosal axons: evidence for a supernormal period in central myelinated axons. Brain Research 1976, 113: 179-187. PMID: 953725, DOI: 10.1016/0006-8993(76)90017-2.Peer-Reviewed Original Research
1975
Observations on impulse conduction along central axons.
Swadlow H, Waxman S. Observations on impulse conduction along central axons. Proceedings Of The National Academy Of Sciences Of The United States Of America 1975, 72: 5156-5159. PMID: 1061101, PMCID: PMC388895, DOI: 10.1073/pnas.72.12.5156.Peer-Reviewed Original Research