1990
Depolarization-dependent actions of dihydropyridines on synaptic transmission in the in vitro rat hippocampus
O'Regan M, Kocsis J, Waxman S. Depolarization-dependent actions of dihydropyridines on synaptic transmission in the in vitro rat hippocampus. Brain Research 1990, 527: 181-191. PMID: 1701335, DOI: 10.1016/0006-8993(90)91136-5.Peer-Reviewed Original ResearchMeSH Keywords3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl esterAnimalsCaffeineDihydropyridinesEvoked PotentialsFemaleHippocampusIn Vitro TechniquesLightMembrane PotentialsNeuronsNifedipineNimodipinePerfusionPotassiumPyramidal TractsRatsRats, Inbred StrainsSynapsesSynaptic TransmissionConceptsBay K 8644Synaptic transmissionDepressant actionIntracellular recordingsModerate membrane depolarizationMembrane depolarizationHippocampal brain slicesNormal Krebs solutionField potential responsesDepolarization-dependent increaseField potential analysisCA1 neuronsPresynaptic locusHippocampal slicesKrebs solutionPostsynaptic componentsPostsynaptic responsesPyramidal cellsNeuronal excitabilityRat hippocampusBrain slicesDirect depolarizationSpike thresholdDHP effectField potentials
1988
Evidence for the presence of two types of potassium channels in the rat optic nerve
Gordon T, Kocsis J, Waxman S. Evidence for the presence of two types of potassium channels in the rat optic nerve. Brain Research 1988, 447: 1-9. PMID: 2454699, DOI: 10.1016/0006-8993(88)90959-6.Peer-Reviewed Original ResearchConceptsRat optic nervePostspike positivityOptic nerveAction potential waveformPotassium channelsAction potential broadeningSingle-fiber recordingsRepetitive firing patternsAction potential repolarizationTEA-sensitive channelsDistinct potassium channelsPotential waveformPronounced afterhyperpolarizationFiber recordingsWhole nerveIntracellular hyperpolarizationGap recordingsRepetitive firingMyelinated axonsNerveAction potentialsPotential repolarizationAfterhyperpolarizationFiring patternsProlonged depolarization
1987
Chapter 8 Ionic channel organization of normal and regenerating mammalian axons
Kocsis J, Waxman S. Chapter 8 Ionic channel organization of normal and regenerating mammalian axons. Progress In Brain Research 1987, 71: 89-101. PMID: 2438722, DOI: 10.1016/s0079-6123(08)61816-6.Peer-Reviewed Original ResearchConceptsNerve fibersPeripheral nervesRegenerated nerve fibersCell remodellingNormal developmentMammalian nerve fibresSchwann cellsElectrophysiological characteristicsFine caliberMyelinated axonsImmature axonsAxonal growthMammalian axonsNerveNormal maturationRemodelling occursAxonsCell arrestRemodellingTime courseMyelinIonic channelsLong termMaturationTime of maturation
1986
Mammalian optic nerve fibers display two pharmacologically distinct potassium channels
Kocsis J, Gordon T, Waxman S. Mammalian optic nerve fibers display two pharmacologically distinct potassium channels. Brain Research 1986, 383: 357-361. PMID: 2429732, DOI: 10.1016/0006-8993(86)90040-5.Peer-Reviewed Original ResearchConceptsOptic nerve fibersNerve fibersDistinct potassium channelsPotassium channelsRat optic nerve fibersNerve action potentialsAction potential characteristicsAction potential repolarizationTEA-sensitive channelsIntracellular hyperpolarizationAction potentialsPotential repolarizationSuction electrodeTetraethylammoniumPotential characteristicsRepolarizationPositivity
1985
Myelin sheath remodelling in regenerated rat sciatic nerve
Hildebrand C, Kocsis J, Berglund S, Waxman S. Myelin sheath remodelling in regenerated rat sciatic nerve. Brain Research 1985, 358: 163-170. PMID: 2416385, DOI: 10.1016/0006-8993(85)90960-6.Peer-Reviewed Original ResearchConceptsRat sciatic nerveSciatic nerveRegenerated nervesAdult rat sciatic nerveRegenerated rat sciatic nerveNormal control nervesLight microscopic examinationAction potential waveformCrush lesionMonths survivalNerve segmentsControl nervesSame nerveIndividual nervesNerve fibersNerveShort sheathMyelin layersMyelin sheathPotassium channelsMicroscopic examinationOrganization of Ion Channels in the Myelinated Nerve Fiber
Waxman S, Ritchie J. Organization of Ion Channels in the Myelinated Nerve Fiber. Science 1985, 228: 1502-1507. PMID: 2409596, DOI: 10.1126/science.2409596.Peer-Reviewed Original ResearchDifferences between mammalian ventral and dorsal spinal roots in response to blockade of potassium channels during maturation
Bowe C, Kocsis J, Waxman S. Differences between mammalian ventral and dorsal spinal roots in response to blockade of potassium channels during maturation. Proceedings Of The Royal Society B 1985, 224: 355-366. PMID: 2410932, DOI: 10.1098/rspb.1985.0037.Peer-Reviewed Original ResearchConceptsDorsal spinal rootsSensory fibersMammalian motorPotassium channelsSpinal rootsAction potentialsRoot fibersCompound action potentialSingle sensory fibresDorsal root fibersVentral root fibersClasses of axonsIndividual action potentialsPharmacological blockadeVentral rootsYoung rootsSensory axonsWhole nervePotassium conductanceAxon responsesCourse of maturationBlockadeAxonsRoots resultsDifferential sensitivityLigature‐induced injury in peripheral nerve: Electrophysiological observations on changes in action potential characteristics following blockade of potassium conductance
Waxman S, Kocsis J, Eng D. Ligature‐induced injury in peripheral nerve: Electrophysiological observations on changes in action potential characteristics following blockade of potassium conductance. Muscle & Nerve 1985, 8: 85-92. PMID: 2414652, DOI: 10.1002/mus.880080202.Peer-Reviewed Original ResearchConceptsAction potentialsRepetitive firingSingle stimulusPotassium channelsCompound action potentialRat sciatic nerveAction potential propertiesWhole-nerve responseAction potential characteristicsIntra-axonal recordingsAction potential waveformNerve segmentsSciatic nerveNerve responsesPeripheral nervesInjury siteMyelinated fibersLater spikesElectrophysiological observationsNerveRefractory periodFiring patternsPotassium conductancePotential waveformInitial spike
1983
Maturation of mammalian myelinated fibers: changes in action-potential characteristics following 4-aminopyridine application
Kocsis J, Ruiz J, Waxman S. Maturation of mammalian myelinated fibers: changes in action-potential characteristics following 4-aminopyridine application. Journal Of Neurophysiology 1983, 50: 449-463. PMID: 6310062, DOI: 10.1152/jn.1983.50.2.449.Peer-Reviewed Original ResearchThe supernormal period of the cerebellar parallel fibers effects of [Ca2+]o and [K+]o
Malenka R, Kocsis J, Waxman S. The supernormal period of the cerebellar parallel fibers effects of [Ca2+]o and [K+]o. Pflügers Archiv - European Journal Of Physiology 1983, 397: 176-183. PMID: 6878005, DOI: 10.1007/bf00584354.Peer-Reviewed Original ResearchConceptsSupernormal periodConditioning stimulationActivity-dependent changesParallel fibersCerebellar parallel fibersConditioning volleyIon-sensitive microelectrodesConditioning stimulusExtracellular calciumLatency changesLatency shiftCortex exhibitExtracellular ionic concentrationsTest response latenciesTest latencyStimulationResponse latencyRelative increaseSmall increaseLatencyPeriodSuperfusateExcitabilityEffects of extracellular potassium concentration on the excitability of the parallel fibres of the rat cerebellum.
Kocsis J, Malenka R, Waxman S. Effects of extracellular potassium concentration on the excitability of the parallel fibres of the rat cerebellum. The Journal Of Physiology 1983, 334: 225-244. PMID: 6864558, PMCID: PMC1197311, DOI: 10.1113/jphysiol.1983.sp014491.Peer-Reviewed Original Research
1982
Regenerating mammalian nerve fibres: changes in action potential waveform and firing characteristics following blockage of potassium conductance
Kocsis J, Waxman S, Hildebrand C, Ruiz J. Regenerating mammalian nerve fibres: changes in action potential waveform and firing characteristics following blockage of potassium conductance. Proceedings Of The Royal Society B 1982, 217: 77-87. PMID: 6131423, DOI: 10.1098/rspb.1982.0095.Peer-Reviewed Original ResearchConceptsRegenerating axonsNerve fibersFiring propertiesAction potentialsPotassium conductancePotassium channelsCompound action potentialSciatic nerve fibersEarly regenerating axonsAction potential waveformRat nerve fibresMammalian nerve fibresDemyelinated axonsMyelinated fibersExtracellular applicationAxonsRecording techniquesSingle stimulusFiring characteristicsPotential waveformPresent studyRat optic nerve: Electrophysiological, pharmacological and anatomical studies during development
Foster R, Connors B, Waxman S. Rat optic nerve: Electrophysiological, pharmacological and anatomical studies during development. Brain Research 1982, 3: 371-386. PMID: 7066695, DOI: 10.1016/0165-3806(82)90005-0.Peer-Reviewed Original ResearchConceptsCompound action potentialAction potentialsConduction velocityOptic nerveOptic nerve axonsShort latency peaksRat optic nerveAxonal membrane propertiesShort-latency componentsSixth postnatal dayOnset of myelinationWeeks of ageRelative refractory periodDays of ageGlial cellsPostnatal dayRefractory periodNerve axonsAxonal diameterLatency componentsCalcium conductanceAxonal sizeMyelinationNerve growthLatency peaks
1981
Modulation of Parallel Fiber Excitability by Postsynaptically Mediated Changes in Extracellular Potassium
Malenka R, Kocsis J, Ransom B, Waxman S. Modulation of Parallel Fiber Excitability by Postsynaptically Mediated Changes in Extracellular Potassium. Science 1981, 214: 339-341. PMID: 7280695, DOI: 10.1126/science.7280695.Peer-Reviewed Original ResearchConceptsSynaptic field potentialsField potentialsParallel fiber stimulationExtracellular potassium concentrationRat cerebellar cortexParallel fibersAfferent fibersPostsynaptic elementsFiber excitabilityCerebellar cortexExtracellular potassiumFiber stimulationExcitabilityMarked increasePotassium concentrationStimulationMolecular layerBasic and clinical electrophysiology of demyelinating diseases.
Ritchie J, Waxman S, Waksman B. Basic and clinical electrophysiology of demyelinating diseases. Neurology 1981, 31: 1308-10. PMID: 6287348, DOI: 10.1212/wnl.31.10.1308.Peer-Reviewed Original ResearchAction potential electrogenesis in mammalian central axons.
Kocsis J, Waxman S. Action potential electrogenesis in mammalian central axons. Advances In Neurology 1981, 31: 299-312. PMID: 6275668.Peer-Reviewed Original Research
1980
Ionic channel distribution and heterogeneity of the axon membrane in myelinated fibers.
Waxman S, Foster R. Ionic channel distribution and heterogeneity of the axon membrane in myelinated fibers. Brain Research 1980, 203: 205-34. PMID: 6253027, DOI: 10.1016/0165-0173(80)90008-9.Peer-Reviewed Original ResearchAbsence of potassium conductance in central myelinated axons
Kocsis J, Waxman S. Absence of potassium conductance in central myelinated axons. Nature 1980, 287: 348-349. PMID: 7421994, DOI: 10.1038/287348a0.Peer-Reviewed Original ResearchConceptsCentral myelinated axonsMyelinated axonsAction potentialsPotassium conductanceDorsal column axonsVoltage-clamp experimentsLate outward currentOutward currentsAxonsSodium ion permeabilityLate increaseDepolarization phasePotassium permeabilityAxonal membraneRepolarizationMyelinInitial increaseVoltage-dependent changesSodium inactivationDemyelinationPrevious studiesEffects of 4-aminopyridine on the frequency following properties of the parallel fibers of the cerebellar cortex
Kocsis J, Malenka R, Waxman S. Effects of 4-aminopyridine on the frequency following properties of the parallel fibers of the cerebellar cortex. Brain Research 1980, 195: 511-516. PMID: 6249447, DOI: 10.1016/0006-8993(80)90090-6.Peer-Reviewed Original Research