2024
Functionally-selective inhibition of threshold sodium currents and excitability in dorsal root ganglion neurons by cannabinol
Ghovanloo M, Effraim P, Tyagi S, Zhao P, Dib-Hajj S, Waxman S. Functionally-selective inhibition of threshold sodium currents and excitability in dorsal root ganglion neurons by cannabinol. Communications Biology 2024, 7: 120. PMID: 38263462, PMCID: PMC10805714, DOI: 10.1038/s42003-024-05781-x.Peer-Reviewed Original ResearchConceptsDorsal root ganglionDorsal root ganglion neuronal excitabilityDorsal root ganglion neuronsNeuronal excitabilityCurrent-clamp analysisSteady-state inactivationVoltage-dependent sodiumSlow inactivated stateAutomated patch clamp platformMultielectrode array recordingsNav currentsNeuropathic painSodium currentRoot ganglionGanglion neuronsSlow inactivationInactivated stateCurrent inhibitorsIon channelsNeuronsInhibitory effectCannabinolArray recordingsEndocannabinoidCannabinoid
2001
Contribution of Nav1.8 Sodium Channels to Action Potential Electrogenesis in DRG Neurons
Renganathan M, Cummins T, Waxman S. Contribution of Nav1.8 Sodium Channels to Action Potential Electrogenesis in DRG Neurons. Journal Of Neurophysiology 2001, 86: 629-640. PMID: 11495938, DOI: 10.1152/jn.2001.86.2.629.Peer-Reviewed Original ResearchConceptsAction potential electrogenesisDRG neuronsSodium channelsAction potentialsTTX-R sodium channelsSodium-dependent action potentialsDorsal root ganglion neuronsMultiple sodium channelsSmall DRG neuronsCurrent-clamp recordingsNav1.8 sodium channelsSignificant differencesSteady-state inactivationAction potential overshootMaximum rise slopeMV/msAction potential productionFast TTXGanglion neuronsModest depolarizationNeuronsInput resistanceMembrane depolarizationInward membraneElectrogenesis
1998
Slow Closed-State Inactivation: A Novel Mechanism Underlying Ramp Currents in Cells Expressing the hNE/PN1 Sodium Channel
Cummins T, Howe J, Waxman S. Slow Closed-State Inactivation: A Novel Mechanism Underlying Ramp Currents in Cells Expressing the hNE/PN1 Sodium Channel. Journal Of Neuroscience 1998, 18: 9607-9619. PMID: 9822722, PMCID: PMC6793269, DOI: 10.1523/jneurosci.18-23-09607.1998.Peer-Reviewed Original ResearchConceptsTTX-S currentsRamp currentsDRG neuronsClosed-state inactivationSensory neuronsChannel isoformsDistinct integrative propertiesSmall DRG neuronsSodium channelsTTX-sensitive currentsSlow ramp depolarizationSteady-state inactivationRamp depolarizationNeuronsSkeletal muscleState inactivationIntegrative propertiesInactivation propertiesOpen-state inactivationExcitable cellsNovel mechanismCellsDepolarizationInactivationPN1
1997
TTX-Sensitive and -Resistant Na+ Currents, and mRNA for the TTX-Resistant rH1 Channel, Are Expressed in B104 Neuroblastoma Cells
Gu X, Dib-Hajj S, Rizzo M, Waxman S. TTX-Sensitive and -Resistant Na+ Currents, and mRNA for the TTX-Resistant rH1 Channel, Are Expressed in B104 Neuroblastoma Cells. Journal Of Neurophysiology 1997, 77: 236-246. PMID: 9120565, DOI: 10.1152/jn.1997.77.1.236.Peer-Reviewed Original ResearchConceptsB104 neuroblastoma cellsTTX-resistant channelsB104 cellsNeuroblastoma cellsWhole-cell patch-clamp methodAbsence of TTXTTX-resistant currentTTX-sensitive currentsPresence of TTXPA/pFTranscription-polymerase chain reactionLong QT syndromeCell linesSteady-state inactivationNeuroblastoma cell linesAlpha-subunit mRNAPatch-clamp methodTTX-sensitiveHalf-maximal inhibitionInactivation time constantsChannel mRNATTXMembrane excitabilitySubunit mRNAsRT-PCR
1996
Action potential-like responses in B 104 cells with low Na+ channel densities
Gu X, Waxman S. Action potential-like responses in B 104 cells with low Na+ channel densities. Brain Research 1996, 735: 50-58. PMID: 8905169, DOI: 10.1016/0006-8993(96)00604-x.Peer-Reviewed Original ResearchConceptsAction potential-like responsesB104 cellsWhole-cell patch-clamp methodB104 neuroblastoma cellsPA/pFCurrent-clamp modeSteady-state inactivationAction potential generationPatch-clamp methodMicroM TTXNeuroblastoma cellsPrepulse potentialPotential generationResponse amplitudeCellsResponseStimuli