1998
Transplanted Olfactory Ensheathing Cells Remyelinate and Enhance Axonal Conduction in the Demyelinated Dorsal Columns of the Rat Spinal Cord
Imaizumi T, Lankford K, Waxman S, Greer C, Kocsis J. Transplanted Olfactory Ensheathing Cells Remyelinate and Enhance Axonal Conduction in the Demyelinated Dorsal Columns of the Rat Spinal Cord. Journal Of Neuroscience 1998, 18: 6176-6185. PMID: 9698311, PMCID: PMC2605360, DOI: 10.1523/jneurosci.18-16-06176.1998.Peer-Reviewed Original ResearchConceptsDorsal column axonsRat spinal cordSpinal cordRemyelinated axonsDorsal columnsAdult rat spinal cordExtent of remyelinationTransplantation of OECsSpinal cord lesionsCell injection siteQuantitative histological analysisFunctional remyelinationCord lesionsAxonal conductionNeonatal ratsFocal injectionsConduction blockSchwann cellsConduction velocityInjection siteElectrophysiological propertiesAction potentialsAxonsHistological analysisTransplantation
1997
P-3-316 Functional repair of demyelinated spinal cordaxons in the adult rat by transplantation of genetically-engineering Schwann cells
Hommou O, Hashi K, Felts P, Waxman S, Kocsis J. P-3-316 Functional repair of demyelinated spinal cordaxons in the adult rat by transplantation of genetically-engineering Schwann cells. Clinical Neurology And Neurosurgery 1997, 99: s143. DOI: 10.1016/s0303-8467(97)81922-1.Peer-Reviewed Original Research
1996
Expression of mRNA for a sodium channel in subfamily 2 in spinal sensory neurons
Waxman S, Black J. Expression of mRNA for a sodium channel in subfamily 2 in spinal sensory neurons. Neurochemical Research 1996, 21: 395-401. PMID: 8734431, DOI: 10.1007/bf02527702.Peer-Reviewed Original ResearchConceptsDorsal root gangliaSpinal sensory neuronsSchwann cellsDRG neuronsSensory neuronsRat dorsal root gangliaSodium channelsΒ1 subunitExpression of mRNARoot gangliaSpinal cordSitu hybridization cytochemistryNeuronsΑ-subunitAntisense riboprobesBlot analysisType IMRNACellsExpressionHigh levelsGangliaRNA blot analysisHippocampusCord
1994
Rat brain Na+ channel mRNAs in non‐excitable Schwann cells
Oh Y, Black J, Waxman S. Rat brain Na+ channel mRNAs in non‐excitable Schwann cells. FEBS Letters 1994, 350: 342-346. PMID: 8070590, DOI: 10.1016/0014-5793(94)00807-8.Peer-Reviewed Original Research
1991
Differential sensitivity to hypoxia of the peripheral versus central trajectory of primary afferent axons
Utzschneider D, Kocsis J, Waxman S. Differential sensitivity to hypoxia of the peripheral versus central trajectory of primary afferent axons. Brain Research 1991, 551: 136-141. PMID: 1913145, DOI: 10.1016/0006-8993(91)90924-k.Peer-Reviewed Original ResearchConceptsDorsal columnsDorsal rootsAfferent fibersCentral nervous system componentsPrimary afferent fibersSucrose gap chamberAction potential amplitudePrimary afferent axonsCompound action potentialDorsal spinal rootsNervous system componentsAxonal trunksPeripheral nervesSpinal cordSpinal rootsAfferent axonsCNS portionSchwann cellsAdult ratsPotential amplitudeAxon branchesAction potentialsHypoxiaMembrane potential changesMembrane depolarization
1990
Ion channel organization of the myelinated fiber
Black J, Kocsis J, Waxman S. Ion channel organization of the myelinated fiber. Trends In Neurosciences 1990, 13: 48-54. PMID: 1690930, DOI: 10.1016/0166-2236(90)90068-l.Peer-Reviewed Original ResearchImmuno-Localization of Sodium Channels in Axon Membrane and Astrocytes and Schwann Cells in vivo and in vitro
Black J, Friedman B, Cornell-Bell A, Angelides K, Ritchie J, Waxman S. Immuno-Localization of Sodium Channels in Axon Membrane and Astrocytes and Schwann Cells in vivo and in vitro. NATO ASI Series 1990, 81-97. DOI: 10.1007/978-3-642-83968-9_6.Peer-Reviewed Original ResearchSodium channelsGlial cellsSchwann cellsSodium channel immunoreactivityProcesses of astrocytesMammalian CNS tissueBrain sodium channelsVoltage-sensitive sodium channelsNodes of RanvierChannel immunoreactivityRat brain sodium channelsCNS tissueIntense immunostainingAstrocytesImmuno-localizationCellsAxon membraneVivoMajor roleImmunoreactivityImmunostaining
1989
Demyelination in spinal cord injury
Waxman S. Demyelination in spinal cord injury. Journal Of The Neurological Sciences 1989, 91: 1-14. PMID: 2664092, DOI: 10.1016/0022-510x(89)90072-5.Peer-Reviewed Original ResearchConceptsSpinal cord injuryCord injuryDemyelinated axonsFunctional recoveryCompressive spinal cord injuryAbsence of remyelinationRecovery of conductionRecovery of functionSmall-diameter axonsModification of conductionHemorrhagic necrosisPathophysiological basisClinical criteriaComplete transectionSchwann cellsDemyelinationDiameter axonsAction potentialsInjuryDemyelinated fibersAxonsRemyelinationNeurophysiological evidencePhysiological studiesTransection
1988
Temporary adhesions between axons and myelin-forming processes
Sims T, Gilmore S, Waxman S. Temporary adhesions between axons and myelin-forming processes. Brain Research 1988, 40: 223-232. DOI: 10.1016/0165-3806(88)90134-4.Peer-Reviewed Original ResearchSchwann cellsSpinal cordMyelin formationIntraspinal Schwann cellsLumbosacral spinal cordSchwann cell processesMyelination of axonsDorsal funiculusGlial populationsNormal animalsGlial processesAxonsJunctional complexesMarked reductionRat undergoesCordMyelinationInitial contactOligodendrocyte processesAxolemmaPresent studyCellsCell processesEarly stagesSequence of events
1987
Chapter 8 Ionic channel organization of normal and regenerating mammalian axons
Kocsis J, Waxman S. Chapter 8 Ionic channel organization of normal and regenerating mammalian axons. Progress In Brain Research 1987, 71: 89-101. PMID: 2438722, DOI: 10.1016/s0079-6123(08)61816-6.Peer-Reviewed Original ResearchConceptsNerve fibersPeripheral nervesRegenerated nerve fibersCell remodellingNormal developmentMammalian nerve fibresSchwann cellsElectrophysiological characteristicsFine caliberMyelinated axonsImmature axonsAxonal growthMammalian axonsNerveNormal maturationRemodelling occursAxonsCell arrestRemodellingTime courseMyelinIonic channelsLong termMaturationTime of maturation
1986
Remodelling of internodes in regenerated rat sciatic nerve: Electron microscopic observations
Hildebrand C, Mustafa G, Waxman S. Remodelling of internodes in regenerated rat sciatic nerve: Electron microscopic observations. Brain Cell Biology 1986, 15: 681-692. PMID: 3819776, DOI: 10.1007/bf01625187.Peer-Reviewed Original ResearchConceptsRegenerated rat sciatic nerveRat sciatic nerveSciatic nerveSchwann cellsMyelin sheathRegenerated myelin sheathsRegenerated nerve segmentsSchwann cell networkLeft sciatic nerveSchwann cell cytoplasmMyelin sheath breakdownNodes of RanvierCrush lesionNerve segmentsSurvival periodUpper thighAdult ratsSurvival timeNerveInternodal shorteningImportant physiological implicationsMonthsLipid dropletsLamellated bodiesExtensive remodellingEffects of delayed myelination by oligodendrocytes and Schwann cells on the macromolecular structure of axonal membrane in rat spinal cord
Black J, Waxman S, Sims T, Gilmore S. Effects of delayed myelination by oligodendrocytes and Schwann cells on the macromolecular structure of axonal membrane in rat spinal cord. Brain Cell Biology 1986, 15: 745-761. PMID: 3819778, DOI: 10.1007/bf01625192.Peer-Reviewed Original ResearchConceptsDorsal funiculusSpinal cordSchwann cellsMyelin sheathAxonal membraneControl spinal cordsLumbosacral spinal cordSchwann cell ensheathmentRat spinal cordThin myelin sheathsDorsal spinal rootsDays of ageVoltage-sensitive sodium channelsSubsequent myelinationSpinal rootsMyelinated fibersLarge axonsCordMyelinationOligodendrocytesFuniculusSodium channelsIMP densityE-face intramembranous particlesInternodal axolemma
1985
Axo-glial relations in the retina-optic nerve junction of the adult rat: electron-microscopic observations
Hildebrand C, Remahl S, Waxman S. Axo-glial relations in the retina-optic nerve junction of the adult rat: electron-microscopic observations. Brain Cell Biology 1985, 14: 597-617. PMID: 4067610, DOI: 10.1007/bf01200800.Peer-Reviewed Original ResearchConceptsNerve junctionAdult ratsAstrocytic processesDeficient blood-brain barrierEctopic Schwann cellsFibrous astrocytic processesBlood-brain barrierAxo-glial contactsMyelination of axonsNumerous pinocytotic vesiclesTypical oligodendrocytesGlial ensheathmentGlial cellsUnmyelinated segmentsGlia limitansSchwann cellsUnmyelinated axonsWide perivascular spacesPia materPerivascular spacesOligodendroglial cellsDeficient proliferationUnmyelinated partMyelin sheathSame axonDorsal-ventral differences in the glia limitans of the spinal cord: an ultrastructural study in developing normal and irradiated rats.
Sims T, Gilmore S, Waxman S, Klinge E. Dorsal-ventral differences in the glia limitans of the spinal cord: an ultrastructural study in developing normal and irradiated rats. Journal Of Neuropathology & Experimental Neurology 1985, 44: 415-29. PMID: 4009209, DOI: 10.1097/00005072-198507000-00005.Peer-Reviewed Original ResearchConceptsLumbosacral spinal cordGlia limitansDays postnatalSpinal cordSubpial astrocytesRat lumbosacral spinal cordRadial glial processesDorsal-ventral differencesDorsal funiculusNormal ratsVentral surfaceSchwann cellsPostnatal ratsRadial gliaGlial processesRatsAstrocytesCordUltrastructural studyGreater numberLimitansNormal developmentGreater degreeGliaPostnatal
1983
Long-term regenerated nerve fibres retain sensitivity to potassium channel blocking agents
Kocsis J, Waxman S. Long-term regenerated nerve fibres retain sensitivity to potassium channel blocking agents. Nature 1983, 304: 640-642. PMID: 6308475, DOI: 10.1038/304640a0.Peer-Reviewed Original ResearchConceptsNerve fibersPotassium channelsMyelinated peripheral nerve fibresAxon segmentsPeripheral nerve fibersAxon sproutsEndoneurial tubesNerve crushFunctional recoveryFunctional organizationMyelinated fibersAxon cylindersSchwann cellsBurst activityMyelinated axonsMammalian axonsAxonsPeripheral connectionsMembrane depolarizationBasement membraneK channelsRegenerated fibersAxon maturationMyelin protein metabolism in demyelination and remyelination in the sciatic nerve
Smith M, Kocsis J, Waxman S. Myelin protein metabolism in demyelination and remyelination in the sciatic nerve. Brain Research 1983, 270: 37-44. PMID: 6871715, DOI: 10.1016/0006-8993(83)90789-8.Peer-Reviewed Original ResearchConceptsMyelin proteinsControl nervesLPC injectionSciatic nerveRight sciatic nerveSeries of ratsLeft nerveSchwann cellsNerveStructural myelin proteinsLPC treatmentFirst weekTime pointsAmino acid incorporationProtein metabolismLabeled amino acidsAcid incorporationMyelinDaysInjectionLysophosphatidylcholineDemyelinationRemyelinationProteinRats
1968
Micropinocytotic invaginations in the axolemma of peripheral nerves
Waxman S. Micropinocytotic invaginations in the axolemma of peripheral nerves. Cell And Tissue Research 1968, 86: 571-573. PMID: 5707296, DOI: 10.1007/bf00324867.Peer-Reviewed Original Research