2012
Gain-of-function Nav1.8 mutations in painful neuropathy
Faber CG, Lauria G, Merkies IS, Cheng X, Han C, Ahn HS, Persson AK, Hoeijmakers JG, Gerrits MM, Pierro T, Lombardi R, Kapetis D, Dib-Hajj SD, Waxman SG. Gain-of-function Nav1.8 mutations in painful neuropathy. Proceedings Of The National Academy Of Sciences Of The United States Of America 2012, 109: 19444-19449. PMID: 23115331, PMCID: PMC3511073, DOI: 10.1073/pnas.1216080109.Peer-Reviewed Original ResearchConceptsPainful peripheral neuropathySmall fiber neuropathyPainful neuropathyPeripheral neuropathyPainful small fiber neuropathyDorsal root ganglion neuronsSodium channelsApparent underlying causePeripheral nerve axonsDRG neuronsGanglion neuronsNeuropathyNerve axonsUnderlying causeFunction variantsCurrent clampPatientsPotential pathogenicityNeuronsMutationsHyperexcitabilityAxonsResponse
2007
Multiple sodium channels and their roles in electrogenesis within dorsal root ganglion neurons
Rush AM, Cummins TR, Waxman SG. Multiple sodium channels and their roles in electrogenesis within dorsal root ganglion neurons. The Journal Of Physiology 2007, 579: 1-14. PMID: 17158175, PMCID: PMC2075388, DOI: 10.1113/jphysiol.2006.121483.Peer-Reviewed Original ResearchConceptsSodium channel isoformsDorsal root ganglion neuronsChannel isoformsDRG neuronsGanglion neuronsSpecific sodium channel isoformsMultiple sodium channelsSodium channelsPattern of expressionModulatory moleculesDisease insultsModulation of channelsPlasticity of expressionNeuronsDifferent subclassesExcitabilityDistinct biophysical characteristicsIsoformsExpressionBody of literatureInsultImportant roleResponse
1996
Action potential-like responses in B 104 cells with low Na+ channel densities
Gu X, Waxman S. Action potential-like responses in B 104 cells with low Na+ channel densities. Brain Research 1996, 735: 50-58. PMID: 8905169, DOI: 10.1016/0006-8993(96)00604-x.Peer-Reviewed Original ResearchConceptsAction potential-like responsesB104 cellsWhole-cell patch-clamp methodB104 neuroblastoma cellsPA/pFCurrent-clamp modeSteady-state inactivationAction potential generationPatch-clamp methodMicroM TTXNeuroblastoma cellsPrepulse potentialPotential generationResponse amplitudeCellsResponseStimuli
1987
Physiological effects of 4‐aminopyridine on demyelinated mammalian motor and sensory fibers
Bowe C, Kocsis J, Targ E, Waxman S. Physiological effects of 4‐aminopyridine on demyelinated mammalian motor and sensory fibers. Annals Of Neurology 1987, 22: 264-268. PMID: 2821876, DOI: 10.1002/ana.410220212.Peer-Reviewed Original ResearchConceptsSensory fibersClinical trialsAction potentialsPotassium channel blockadeDorsal root axonsCompound action potentialDorsal spinal rootsSingle action potentialMammalian motorIntrathecal injectionMultiple sclerosisSensory dysfunctionVentral rootsSpinal rootsNeuromuscular disordersSpecific fiber typesElectrophysiological responsesSingle stimulusPhysiological effectsTrialsFiber typesResponseParesthesiaSclerosisDysfunction
1980
Myoelectric silence following unopposed passive stretch in normal man.
Angel R, Waxman S, Kocsis J. Myoelectric silence following unopposed passive stretch in normal man. Journal Of Neurology Neurosurgery & Psychiatry 1980, 43: 705. PMID: 7431031, PMCID: PMC490642, DOI: 10.1136/jnnp.43.8.705.Peer-Reviewed Original ResearchConceptsNormal menMyoelectric silencePassive stretchAfferent reflex pathwaysPassive muscle stretchSpindle afferent dischargeAutogenetic inhibitionLengthening reactionReflex pathwaysSustained contractionAfferent dischargeMyotatic reflexEMG activityMuscle stretchLower limbsSilent periodFusimotor activityRenshaw inhibitionInitial responseBrief cessationMuscleMenPossible mechanismInhibitionResponse