2024
Ion channels in osteoarthritis: emerging roles and potential targets
Zhou R, Fu W, Vasylyev D, Waxman S, Liu C. Ion channels in osteoarthritis: emerging roles and potential targets. Nature Reviews Rheumatology 2024, 20: 545-564. PMID: 39122910, DOI: 10.1038/s41584-024-01146-0.Peer-Reviewed Original ResearchIon channelsVoltage-dependent calcium channelsAcid-sensing ion channelsTransient receptor potential channelsVoltage-gated sodium channelsIon channel modulatorsFunction of ion channelsPotential clinical applicationsCalcium channelsPreclinical studiesClinical impactSymptomatic reliefPotassium channelsChloride channelsDisease-modifying treatmentsClinical trialsSodium channelsBone hyperplasiaChannel modulationIon channel biologySynovial inflammationClinical applicationPiezo channelsModel of OAPotential target
2016
Voltage-Gated Ion Channels as Molecular Targets for Pain
Zamponi G, Han C, Waxman S. Voltage-Gated Ion Channels as Molecular Targets for Pain. 2016, 415-436. DOI: 10.1007/978-1-4899-7654-3_22.Peer-Reviewed Original ResearchVoltage-gated ion channelsDorsal root ganglion neuronsIon channelsMolecular targetsAction potential firing propertiesTreatment of painVoltage-gated sodiumImportant ion channelsNerve injuryGanglion neuronsPain signalingPeripheral afferentsPainFiring propertiesPharmacological modulatorsPotassium channelsTranslational researchDevelopment of modulatorsFunction changesHyperexcitabilityAfferentsInflammationMajor roleMajor themesInjury
1999
Changes in expression of voltage‐gated potassium channels in dorsal root ganglion neurons following axotomy
Ishikawa K, Tanaka M, Black J, Waxman S. Changes in expression of voltage‐gated potassium channels in dorsal root ganglion neurons following axotomy. Muscle & Nerve 1999, 22: 502-507. PMID: 10204786, DOI: 10.1002/(sici)1097-4598(199904)22:4<502::aid-mus12>3.0.co;2-k.Peer-Reviewed Original ResearchConceptsDorsal root ganglion neuronsDRG neuronsVoltage-gated potassium channelsAxonal injuryGanglion neuronsPotassium channelsChannel expressionNormal DRG neuronsChronic pain syndromeSodium channel expressionSpectrum of subtypesVoltage-gated sodium channelsSpecific potassium channelsPain syndromeDRG cellsAdult ratsNervous systemAxotomyKv expressionNeuronsImmunocytochemical methodsMolecular correlatesElectrical excitabilitySodium channelsImmunoreactivity
1996
Manipulation of the delayed rectifier Kv1.5 potassium channel in glial cells by antisense oligodeoxynucleotides
Roy M, Saal D, Perney T, Sontheimer H, Waxman S, Kaczmarek L. Manipulation of the delayed rectifier Kv1.5 potassium channel in glial cells by antisense oligodeoxynucleotides. Glia 1996, 18: 177-184. PMID: 8915650, DOI: 10.1002/(sici)1098-1136(199611)18:3<177::aid-glia2>3.0.co;2-x.Peer-Reviewed Original ResearchConceptsGlial cellsKv1.5 channel proteinSpinal cordKv1.5 proteinCultured spinal cordTEA-insensitive currentSpinal cord astrocytesRectifier current densityPotassium channel typesAntisense oligodeoxynucleotide treatmentKv1.5 potassium channelAdult ratsCerebellar slicesChannel proteinsAstrocytesOligodeoxynucleotide treatmentPotassium channelsRectifier currentEndfoot processesSuch treatmentCurrent activationAntisense oligodeoxynucleotidesCordCellsTreatment
1991
Tea‐sensitive potassium channels and inward rectification in regenerated rat sciatic nerve
Gardon T, Kocsis J, Waxman S. Tea‐sensitive potassium channels and inward rectification in regenerated rat sciatic nerve. Muscle & Nerve 1991, 14: 640-646. PMID: 1922170, DOI: 10.1002/mus.880140707.Peer-Reviewed Original ResearchConceptsCompound action potentialRat sciatic nerveNerve crushRegenerated axonsSciatic nerveRegenerated nervesInward rectificationIntra-axonal recording techniquesAdult rat sciatic nerveTEA-sensitive potassium channelsPotassium channelsRegenerated rat sciatic nerveSucrose gap recordingsSciatic nerve crushPeripheral nerve axonsWhole nerve recordingsIntra-axonal recordingsVoltage-sensitive sodium channelsCrush injuryNormal nervesSensitive relaxationRepetitive stimulationAfterhyperpolarizationGap recordingsNerve recordings
1988
Evidence for the presence of two types of potassium channels in the rat optic nerve
Gordon T, Kocsis J, Waxman S. Evidence for the presence of two types of potassium channels in the rat optic nerve. Brain Research 1988, 447: 1-9. PMID: 2454699, DOI: 10.1016/0006-8993(88)90959-6.Peer-Reviewed Original ResearchConceptsRat optic nervePostspike positivityOptic nerveAction potential waveformPotassium channelsAction potential broadeningSingle-fiber recordingsRepetitive firing patternsAction potential repolarizationTEA-sensitive channelsDistinct potassium channelsPotential waveformPronounced afterhyperpolarizationFiber recordingsWhole nerveIntracellular hyperpolarizationGap recordingsRepetitive firingMyelinated axonsNerveAction potentialsPotential repolarizationAfterhyperpolarizationFiring patternsProlonged depolarization
1987
Molecular Organization of the Cell Membrane in Normal and Pathological Axons: Relation to Glial Contact
Waxman S. Molecular Organization of the Cell Membrane in Normal and Pathological Axons: Relation to Glial Contact. NATO ASI Series 1987, 709-736. DOI: 10.1007/978-3-642-71381-1_43.Peer-Reviewed Original ResearchCell membraneMolecular organizationMolecular differentiationCell recognition moleculesVoltage-sensitive sodium channelsVoltage-sensitive potassium channelsIon channel organizationIon channel populationsCell typesAdult mammalsRecognition moleculesCoordinated mannerMyelin-forming cellsPotassium channelsChannel populationsGlial cellsMembraneSodium channelsDifferentiationCellsRecent studiesAxon membraneChannel organizationGlial contactMammals
1986
Mammalian optic nerve fibers display two pharmacologically distinct potassium channels
Kocsis J, Gordon T, Waxman S. Mammalian optic nerve fibers display two pharmacologically distinct potassium channels. Brain Research 1986, 383: 357-361. PMID: 2429732, DOI: 10.1016/0006-8993(86)90040-5.Peer-Reviewed Original ResearchConceptsOptic nerve fibersNerve fibersDistinct potassium channelsPotassium channelsRat optic nerve fibersNerve action potentialsAction potential characteristicsAction potential repolarizationTEA-sensitive channelsIntracellular hyperpolarizationAction potentialsPotential repolarizationSuction electrodeTetraethylammoniumPotential characteristicsRepolarizationPositivity
1985
Myelin sheath remodelling in regenerated rat sciatic nerve
Hildebrand C, Kocsis J, Berglund S, Waxman S. Myelin sheath remodelling in regenerated rat sciatic nerve. Brain Research 1985, 358: 163-170. PMID: 2416385, DOI: 10.1016/0006-8993(85)90960-6.Peer-Reviewed Original ResearchConceptsRat sciatic nerveSciatic nerveRegenerated nervesAdult rat sciatic nerveRegenerated rat sciatic nerveNormal control nervesLight microscopic examinationAction potential waveformCrush lesionMonths survivalNerve segmentsControl nervesSame nerveIndividual nervesNerve fibersNerveShort sheathMyelin layersMyelin sheathPotassium channelsMicroscopic examinationOrganization of Ion Channels in the Myelinated Nerve Fiber
Waxman S, Ritchie J. Organization of Ion Channels in the Myelinated Nerve Fiber. Science 1985, 228: 1502-1507. PMID: 2409596, DOI: 10.1126/science.2409596.Peer-Reviewed Original ResearchDifferences between mammalian ventral and dorsal spinal roots in response to blockade of potassium channels during maturation
Bowe C, Kocsis J, Waxman S. Differences between mammalian ventral and dorsal spinal roots in response to blockade of potassium channels during maturation. Proceedings Of The Royal Society B 1985, 224: 355-366. PMID: 2410932, DOI: 10.1098/rspb.1985.0037.Peer-Reviewed Original ResearchConceptsDorsal spinal rootsSensory fibersMammalian motorPotassium channelsSpinal rootsAction potentialsRoot fibersCompound action potentialSingle sensory fibresDorsal root fibersVentral root fibersClasses of axonsIndividual action potentialsPharmacological blockadeVentral rootsYoung rootsSensory axonsWhole nervePotassium conductanceAxon responsesCourse of maturationBlockadeAxonsRoots resultsDifferential sensitivityLigature‐induced injury in peripheral nerve: Electrophysiological observations on changes in action potential characteristics following blockade of potassium conductance
Waxman S, Kocsis J, Eng D. Ligature‐induced injury in peripheral nerve: Electrophysiological observations on changes in action potential characteristics following blockade of potassium conductance. Muscle & Nerve 1985, 8: 85-92. PMID: 2414652, DOI: 10.1002/mus.880080202.Peer-Reviewed Original ResearchConceptsAction potentialsRepetitive firingSingle stimulusPotassium channelsCompound action potentialRat sciatic nerveAction potential propertiesWhole-nerve responseAction potential characteristicsIntra-axonal recordingsAction potential waveformNerve segmentsSciatic nerveNerve responsesPeripheral nervesInjury siteMyelinated fibersLater spikesElectrophysiological observationsNerveRefractory periodFiring patternsPotassium conductancePotential waveformInitial spike
1983
Long-term regenerated nerve fibres retain sensitivity to potassium channel blocking agents
Kocsis J, Waxman S. Long-term regenerated nerve fibres retain sensitivity to potassium channel blocking agents. Nature 1983, 304: 640-642. PMID: 6308475, DOI: 10.1038/304640a0.Peer-Reviewed Original ResearchConceptsNerve fibersPotassium channelsMyelinated peripheral nerve fibresAxon segmentsPeripheral nerve fibersAxon sproutsEndoneurial tubesNerve crushFunctional recoveryFunctional organizationMyelinated fibersAxon cylindersSchwann cellsBurst activityMyelinated axonsMammalian axonsAxonsPeripheral connectionsMembrane depolarizationBasement membraneK channelsRegenerated fibersAxon maturation
1982
Regenerating mammalian nerve fibres: changes in action potential waveform and firing characteristics following blockage of potassium conductance
Kocsis J, Waxman S, Hildebrand C, Ruiz J. Regenerating mammalian nerve fibres: changes in action potential waveform and firing characteristics following blockage of potassium conductance. Proceedings Of The Royal Society B 1982, 217: 77-87. PMID: 6131423, DOI: 10.1098/rspb.1982.0095.Peer-Reviewed Original ResearchConceptsRegenerating axonsNerve fibersFiring propertiesAction potentialsPotassium conductancePotassium channelsCompound action potentialSciatic nerve fibersEarly regenerating axonsAction potential waveformRat nerve fibresMammalian nerve fibresDemyelinated axonsMyelinated fibersExtracellular applicationAxonsRecording techniquesSingle stimulusFiring characteristicsPotential waveformPresent study