2016
Voltage-Gated Ion Channels as Molecular Targets for Pain
Zamponi G, Han C, Waxman S. Voltage-Gated Ion Channels as Molecular Targets for Pain. 2016, 415-436. DOI: 10.1007/978-1-4899-7654-3_22.Peer-Reviewed Original ResearchVoltage-gated ion channelsDorsal root ganglion neuronsIon channelsMolecular targetsAction potential firing propertiesTreatment of painVoltage-gated sodiumImportant ion channelsNerve injuryGanglion neuronsPain signalingPeripheral afferentsPainFiring propertiesPharmacological modulatorsPotassium channelsTranslational researchDevelopment of modulatorsFunction changesHyperexcitabilityAfferentsInflammationMajor roleMajor themesInjury
1982
Regenerating mammalian nerve fibres: changes in action potential waveform and firing characteristics following blockage of potassium conductance
Kocsis J, Waxman S, Hildebrand C, Ruiz J. Regenerating mammalian nerve fibres: changes in action potential waveform and firing characteristics following blockage of potassium conductance. Proceedings Of The Royal Society B 1982, 217: 77-87. PMID: 6131423, DOI: 10.1098/rspb.1982.0095.Peer-Reviewed Original ResearchConceptsRegenerating axonsNerve fibersFiring propertiesAction potentialsPotassium conductancePotassium channelsCompound action potentialSciatic nerve fibersEarly regenerating axonsAction potential waveformRat nerve fibresMammalian nerve fibresDemyelinated axonsMyelinated fibersExtracellular applicationAxonsRecording techniquesSingle stimulusFiring characteristicsPotential waveformPresent study