2011
Sodium channels and microglial function
Black JA, Waxman SG. Sodium channels and microglial function. Experimental Neurology 2011, 234: 302-315. PMID: 21985863, DOI: 10.1016/j.expneurol.2011.09.030.Peer-Reviewed Original ResearchConceptsCentral nervous systemSodium channel isoformsEffector functionsChannel isoformsMultiple cytokines/chemokinesResident immune cellsResponse of microgliaCytokines/chemokinesVoltage-gated sodium channel isoformsSpinal cord parenchymaSodium channel activityMicroglial functionPromotion of repairCord parenchymaImmune cellsMicrogliaNervous systemCell surface receptorsContinuous surveillanceAdhesion moleculesSodium channelsActivating signalsChannel activitySignaling pathwaysSurface receptors
2009
Dorsal Root Ganglion Neurons
Rush A, Waxman S. Dorsal Root Ganglion Neurons. 2009, 615-619. DOI: 10.1016/b978-008045046-9.01660-0.Peer-Reviewed Original Research
2008
Multiple sodium channel isoforms and mitogen‐activated protein kinases are present in painful human neuromas
Black JA, Nikolajsen L, Kroner K, Jensen TS, Waxman SG. Multiple sodium channel isoforms and mitogen‐activated protein kinases are present in painful human neuromas. Annals Of Neurology 2008, 64: 644-653. PMID: 19107992, DOI: 10.1002/ana.21527.Peer-Reviewed Original ResearchConceptsMultiple sodium channel isoformsHuman neuromasSodium channel isoformsPainful neuromasMitogen-activated protein kinaseERK1/2 MAP kinasesNeuronal voltage-gated sodium channelsChannel isoformsSodium channel Nav1.3Sodium channelsSpontaneous ectopic dischargeTreatment of painSodium channel Nav1.1Possible therapeutic targetVoltage-gated sodium channelsMAP kinase p38Ectopic dischargesChronic painTraumatic neuromaChannel Nav1.1MAP kinaseExtracellular signal-regulated kinases 1NeuromaTherapeutic targetPain
2007
Multiple sodium channels and their roles in electrogenesis within dorsal root ganglion neurons
Rush AM, Cummins TR, Waxman SG. Multiple sodium channels and their roles in electrogenesis within dorsal root ganglion neurons. The Journal Of Physiology 2007, 579: 1-14. PMID: 17158175, PMCID: PMC2075388, DOI: 10.1113/jphysiol.2006.121483.Peer-Reviewed Original ResearchConceptsSodium channel isoformsDorsal root ganglion neuronsChannel isoformsDRG neuronsGanglion neuronsSpecific sodium channel isoformsMultiple sodium channelsSodium channelsPattern of expressionModulatory moleculesDisease insultsModulation of channelsPlasticity of expressionNeuronsDifferent subclassesExcitabilityDistinct biophysical characteristicsIsoformsExpressionBody of literatureInsultImportant roleResponse
2006
Axonal conduction and injury in multiple sclerosis: the role of sodium channels
Waxman SG. Axonal conduction and injury in multiple sclerosis: the role of sodium channels. Nature Reviews Neuroscience 2006, 7: 932-941. PMID: 17115075, DOI: 10.1038/nrn2023.Peer-Reviewed Original ResearchConceptsAxonal degenerationSodium channelsChannel isoformsDistinct pathophysiological rolesKey PointsMultiple sclerosisMultiple neurological deficitsRelapsing-remitting courseRestoration of conductionDegeneration of axonsCerebellar Purkinje neuronsVoltage-gated sodium channelsContext of demyelinationNeurological deficitsProgressive courseMultiple sclerosisAxonal conductionDisease progressionNav1.8 channelsConduction failurePathophysiological rolePurkinje neuronsCNS axonsFiring patternsLoss of coordinationAberrant expression
1998
Slow Closed-State Inactivation: A Novel Mechanism Underlying Ramp Currents in Cells Expressing the hNE/PN1 Sodium Channel
Cummins T, Howe J, Waxman S. Slow Closed-State Inactivation: A Novel Mechanism Underlying Ramp Currents in Cells Expressing the hNE/PN1 Sodium Channel. Journal Of Neuroscience 1998, 18: 9607-9619. PMID: 9822722, PMCID: PMC6793269, DOI: 10.1523/jneurosci.18-23-09607.1998.Peer-Reviewed Original ResearchConceptsTTX-S currentsRamp currentsDRG neuronsClosed-state inactivationSensory neuronsChannel isoformsDistinct integrative propertiesSmall DRG neuronsSodium channelsTTX-sensitive currentsSlow ramp depolarizationSteady-state inactivationRamp depolarizationNeuronsSkeletal muscleState inactivationIntegrative propertiesInactivation propertiesOpen-state inactivationExcitable cellsNovel mechanismCellsDepolarizationInactivationPN1