2016
Spatial organization shapes the turnover of a bacterial transcriptome
Moffitt JR, Pandey S, Boettiger AN, Wang S, Zhuang X. Spatial organization shapes the turnover of a bacterial transcriptome. ELife 2016, 5: e13065. PMID: 27198188, PMCID: PMC4874777, DOI: 10.7554/elife.13065.Peer-Reviewed Original ResearchMeSH KeywordsEscherichia coliMicroscopy, FluorescenceRNA Processing, Post-TranscriptionalSequence Analysis, RNASpatial AnalysisTranscriptomeConceptsBacterial transcriptomesSpatial organizationE. coli transcriptomeCo-translational insertionInner membrane proteinProtein mRNASignal recognition particlePost-transcriptional fatePost-transcriptional regulationSuper-resolution microscopyRNA degradosomePeriplasmic proteinsSignal peptideRNA sequencingTranscriptomeMembrane enrichmentSelective destabilizationMRNARNAProteinDegradosomeEukaryotesMembraneProkaryotesPowerful means
2013
Probing Allostery Through DNA
Kim S, Broströmer E, Xing D, Jin J, Chong S, Ge H, Wang S, Gu C, Yang L, Gao YQ, Su XD, Sun Y, Xie XS. Probing Allostery Through DNA. Science 2013, 339: 816-819. PMID: 23413354, PMCID: PMC3586787, DOI: 10.1126/science.1229223.Peer-Reviewed Original ResearchMeSH KeywordsAllosteric RegulationBase SequenceBinding SitesDNA-Binding ProteinsDNA-Directed RNA PolymerasesDNA, B-FormEscherichia coliGene ExpressionGene Expression Regulation, BacterialLac RepressorsMolecular Dynamics SimulationNucleosomesProtein BindingProtein Structure, TertiaryReceptors, GlucocorticoidTranscription FactorsViral Proteins
2012
Helical insertion of peptidoglycan produces chiral ordering of the bacterial cell wall
Wang S, Furchtgott L, Huang KC, Shaevitz JW. Helical insertion of peptidoglycan produces chiral ordering of the bacterial cell wall. Proceedings Of The National Academy Of Sciences Of The United States Of America 2012, 109: e595-e604. PMID: 22343529, PMCID: PMC3309786, DOI: 10.1073/pnas.1117132109.Peer-Reviewed Original ResearchConceptsHelical insertionCell wallGlycan strandsCell shapeRod-shaped bacterium Escherichia coliPeptidoglycan cell wallCell wall architectureCell growthRod-shaped bacteriaBacillus subtilis cellsBacterium Escherichia coliCell wall networkBacterial cell wallMreB cytoskeletonNanometer-sized proteinsBacterial cytoskeletonBiological kingdomsWall synthesisPeptidoglycan networkSubtilis cellsTurgor pressureEscherichia coliElongational growthCytoskeletonCommon mechanism
2011
The bacterial actin MreB rotates, and rotation depends on cell-wall assembly
van Teeffelen S, Wang S, Furchtgott L, Huang KC, Wingreen NS, Shaevitz JW, Gitai Z. The bacterial actin MreB rotates, and rotation depends on cell-wall assembly. Proceedings Of The National Academy Of Sciences Of The United States Of America 2011, 108: 15822-15827. PMID: 21903929, PMCID: PMC3179079, DOI: 10.1073/pnas.1108999108.Peer-Reviewed Original ResearchConceptsCytoskeletal proteinsRod-like cell shapeCell wall synthesis machineryActin homolog MreBPeptidoglycan cell wallCell wall assemblyMultiple cytoskeletal proteinsMreB dynamicsBacterial morphogenesisCytoskeletal dynamicsSynthesis machineryCellular functionsCellular processesMotor proteinsCell shapeCell wallCytoskeletal motorsBacterial cellsMreBPersistent mannerProteinInsertion siteBiophysical simulationsBacteriaRod shape
2010
Actin-like cytoskeleton filaments contribute to cell mechanics in bacteria
Wang S, Arellano-Santoyo H, Combs PA, Shaevitz JW. Actin-like cytoskeleton filaments contribute to cell mechanics in bacteria. Proceedings Of The National Academy Of Sciences Of The United States Of America 2010, 107: 9182-9185. PMID: 20439764, PMCID: PMC2889055, DOI: 10.1073/pnas.0911517107.Peer-Reviewed Original ResearchConceptsCell wallLive Escherichia coli cellsActin homolog MreBBacterial cell shapePeptidoglycan cell wallEscherichia coli cellsBacterial cytoskeletonEukaryotic cellsCytoskeleton contributesFilamentous cytoskeletonCell shapeColi cellsCytoskeleton filamentsCytoskeletal filamentsCell mechanicsMreBCytoskeletonFirst evidenceProteinCellsBacteriaEukaryotesFilamentsEnzymeMechanical rigidityMeasuring the bending stiffness of bacterial cells using an optical trap.
Wang S, Arellano-Santoyo H, Combs PA, Shaevitz JW. Measuring the bending stiffness of bacterial cells using an optical trap. Journal Of Visualized Experiments 2010 PMID: 20421864, PMCID: PMC3164081, DOI: 10.3791/2012.Peer-Reviewed Original Research