2016
An RNA-aptamer-based two-color CRISPR labeling system
Wang S, Su JH, Zhang F, Zhuang X. An RNA-aptamer-based two-color CRISPR labeling system. Scientific Reports 2016, 6: 26857. PMID: 27229896, PMCID: PMC4882555, DOI: 10.1038/srep26857.Peer-Reviewed Original ResearchConceptsSingle guide RNAsDifferent fluorescent proteinsGenomic lociFluorescent proteinSpecific chromatin lociEndogenous genomic lociDynamics of chromatinPP7 coat proteinTarget genomic lociStem loop 2Essential biological functionsSpecific DNA sequencesDifferent bacterial speciesChromatin imagingCRISPR single guide RNAsChromatin lociRepetitive sequencesDNA sequencesChromatin labelingCoat proteinBiological functionsHuman cellsLoop 2RNA aptamersBacterial species
2014
Characterization and development of photoactivatable fluorescent proteins for single-molecule–based superresolution imaging
Wang S, Moffitt JR, Dempsey GT, Xie XS, Zhuang X. Characterization and development of photoactivatable fluorescent proteins for single-molecule–based superresolution imaging. Proceedings Of The National Academy Of Sciences Of The United States Of America 2014, 111: 8452-8457. PMID: 24912163, PMCID: PMC4060684, DOI: 10.1073/pnas.1406593111.Peer-Reviewed Original ResearchAnimalsBacterial ProteinsBlotting, WesternCell Line, TumorChlorocebus aethiopsCOS CellsDNA-Binding ProteinsEscherichia coli ProteinsHumansLuminescent ProteinsMicroscopy, FluorescencePhotonsProtein MultimerizationReceptors, Cell SurfaceRecombinant Fusion ProteinsSpectrometry, FluorescenceVimentinZyxin
2013
Cell Shape Can Mediate the Spatial Organization of the Bacterial Cytoskeleton
Wang S, Wingreen NS. Cell Shape Can Mediate the Spatial Organization of the Bacterial Cytoskeleton. Biophysical Journal 2013, 104: 541-552. PMID: 23442905, PMCID: PMC3566457, DOI: 10.1016/j.bpj.2012.12.027.Peer-Reviewed Original ResearchConceptsBacterial cytoskeletonCell shapeCytoskeletal filamentsBacterial cytoskeletal proteinsRod-shaped cellsCytoskeletal proteinsCell wallCytoskeletal polymerizationCytoskeletonSpatial patterningMreBConformational transitionSpatial organizationFilament lengthSame membraneFilamentsMembraneFtsZSpatial patternsChemical energyFilament bendingProteinPatterningProper controlMicrofluidic approach
2012
Helical insertion of peptidoglycan produces chiral ordering of the bacterial cell wall
Wang S, Furchtgott L, Huang KC, Shaevitz JW. Helical insertion of peptidoglycan produces chiral ordering of the bacterial cell wall. Proceedings Of The National Academy Of Sciences Of The United States Of America 2012, 109: e595-e604. PMID: 22343529, PMCID: PMC3309786, DOI: 10.1073/pnas.1117132109.Peer-Reviewed Original ResearchConceptsHelical insertionCell wallGlycan strandsCell shapeRod-shaped bacterium Escherichia coliPeptidoglycan cell wallCell wall architectureCell growthRod-shaped bacteriaBacillus subtilis cellsBacterium Escherichia coliCell wall networkBacterial cell wallMreB cytoskeletonNanometer-sized proteinsBacterial cytoskeletonBiological kingdomsWall synthesisPeptidoglycan networkSubtilis cellsTurgor pressureEscherichia coliElongational growthCytoskeletonCommon mechanism