2022
How to correct relative voxel scale factors for calculations of vector-difference Fourier maps in cryo-EM
Wang J, Liu J, Gisriel CJ, Wu S, Maschietto F, Flesher DA, Lolis E, Lisi GP, Brudvig GW, Xiong Y, Batista VS. How to correct relative voxel scale factors for calculations of vector-difference Fourier maps in cryo-EM. Journal Of Structural Biology 2022, 214: 107902. PMID: 36202310, PMCID: PMC10226527, DOI: 10.1016/j.jsb.2022.107902.Peer-Reviewed Original ResearchConceptsCryo-EM mapsAmino acid residuesAcid residuesCryo-electron microscopy mapIndividual amino acid residuesCyanobacteria Synechocystis spPCC 6803Synechocystis spMicroscopy mapsThermosynechococcus elongatusSARS-CoV-2 spike proteinLocal structural changesResiduesSpike proteinAtomic coordinatesElongatusSubunitsSpeciesProteinSpSimilar structureStructural changes
2019
Structural Studies αvβ8 Integrin by Single Particle Cryo-EM
Campbell M, Cormier A, Ito S, Wu S, Lou J, Marks J, Baron J, Nishimura S, Cheng Y. Structural Studies αvβ8 Integrin by Single Particle Cryo-EM. Microscopy And Microanalysis 2019, 25: 1312-1313. DOI: 10.1017/s1431927619007293.Peer-Reviewed Original ResearchCryo-EM structures of remodeler-nucleosome intermediates suggest allosteric control through the nucleosome
Armache J, Gamarra N, Johnson S, Leonard J, Wu S, Narlikar G, Cheng Y. Cryo-EM structures of remodeler-nucleosome intermediates suggest allosteric control through the nucleosome. ELife 2019, 8: e46057. PMID: 31210637, PMCID: PMC6611695, DOI: 10.7554/elife.46057.Peer-Reviewed Original Research
2018
Cryo-EM structure of the Mechanotransduction Channel NOMPC
Jin P, Bulkley D, Guo Y, Zhang W, Guo Z, Huynh W, Wu S, Meltzer S, Cheng T, Jan L, Jan Y, Cheng Y. Cryo-EM structure of the Mechanotransduction Channel NOMPC. Biophysical Journal 2018, 114: 22a. DOI: 10.1016/j.bpj.2017.11.164.Peer-Reviewed Original Research
2014
Subnanometre-resolution electron cryomicroscopy structure of a heterodimeric ABC exporter
Kim J, Wu S, Tomasiak T, Mergel C, Winter M, Stiller S, Robles-Colmanares Y, Stroud R, Tampé R, Craik C, Cheng Y. Subnanometre-resolution electron cryomicroscopy structure of a heterodimeric ABC exporter. Nature 2014, 517: 396-400. PMID: 25363761, PMCID: PMC4372080, DOI: 10.1038/nature13872.Peer-Reviewed Original ResearchStructural Studies of the Yeast Prp8-Snu114 Complex
He Y, Wu S, Booth D, Agarrd D, Cheng Y, Guthrie C. Structural Studies of the Yeast Prp8-Snu114 Complex. Biophysical Journal 2014, 106: 47a. DOI: 10.1016/j.bpj.2013.11.338.Peer-Reviewed Original ResearchThe Mechanism of Nucleosome Spacing by a Dimeric Chromatin Remodeling Enzyme
Leonard J, Armache J, Naber N, Wu S, Pate E, Cooke R, Cheng Y, Narlikar G. The Mechanism of Nucleosome Spacing by a Dimeric Chromatin Remodeling Enzyme. Biophysical Journal 2014, 106: 69a-70a. DOI: 10.1016/j.bpj.2013.11.461.Peer-Reviewed Original Research
2013
Mechanistic Analysis of HP1 heterochromatin assembly
Narlikar G, Canzio D, Liao M, Naber N, Pate E, Larson A, Wu S, Cooke R, Schuck P, Cheng Y. Mechanistic Analysis of HP1 heterochromatin assembly. The FASEB Journal 2013, 27: 456.3-456.3. DOI: 10.1096/fasebj.27.1_supplement.456.3.Peer-Reviewed Original ResearchHeterochromatin protein 1Form of heterochromatinAuto-inhibited statePost-translation modificationsHP1 proteinsHeterochromatin assemblyHeterochromatin proteinsChromatin complexesLysine 9Adjacent nucleosomesHistone H3Swi6Competent stateMolecular basisChromodomainChromatinEM structuresDiverse interactionsProtein 1NucleosomesBiochemical dataProteinMechanistic analysisTestable hypothesesAssemblyA conformational switch in HP1 releases auto-inhibition to drive heterochromatin assembly
Canzio D, Liao M, Naber N, Pate E, Larson A, Wu S, Marina D, Garcia J, Madhani H, Cooke R, Schuck P, Cheng Y, Narlikar G. A conformational switch in HP1 releases auto-inhibition to drive heterochromatin assembly. Nature 2013, 496: 377-381. PMID: 23485968, PMCID: PMC3907283, DOI: 10.1038/nature12032.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsChromatin Assembly and DisassemblyChromobox Protein Homolog 5Chromosomal Proteins, Non-HistoneCryoelectron MicroscopyGene SilencingHeterochromatinHistonesMethylationModels, MolecularMolecular Sequence DataNucleosomesProtein Structure, TertiarySchizosaccharomycesSchizosaccharomyces pombe ProteinsXenopus laevis
2012
Electron Tomography of Paracrystalline 2D Arrays
Winkler H, Wu S, Taylor K. Electron Tomography of Paracrystalline 2D Arrays. Methods In Molecular Biology 2012, 955: 427-460. PMID: 23132074, PMCID: PMC7032944, DOI: 10.1007/978-1-62703-176-9_23.Peer-Reviewed Original ResearchSelf-Assembly of Filamentous Amelogenin Requires Calcium and Phosphate: From Dimers via Nanoribbons to Fibrils
Martinez-Avila O, Wu S, Kim S, Cheng Y, Khan F, Samudrala R, Sali A, Horst J, Habelitz S. Self-Assembly of Filamentous Amelogenin Requires Calcium and Phosphate: From Dimers via Nanoribbons to Fibrils. Biomacromolecules 2012, 13: 3494-3502. PMID: 22974364, PMCID: PMC3496023, DOI: 10.1021/bm300942c.Peer-Reviewed Original ResearchStructural Changes in Isometrically Contracting Insect Flight Muscle Trapped following a Mechanical Perturbation
Wu S, Liu J, Reedy MC, Perz-Edwards RJ, Tregear RT, Winkler H, Franzini-Armstrong C, Sasaki H, Lucaveche C, Goldman YE, Reedy MK, Taylor KA. Structural Changes in Isometrically Contracting Insect Flight Muscle Trapped following a Mechanical Perturbation. PLOS ONE 2012, 7: e39422. PMID: 22761792, PMCID: PMC3382574, DOI: 10.1371/journal.pone.0039422.Peer-Reviewed Original ResearchFabs Enable Single Particle cryoEM Studies of Small Proteins
Wu S, Avila-Sakar A, Kim J, Booth D, Greenberg C, Rossi A, Liao M, Li X, Alian A, Griner S, Juge N, Yu Y, Mergel C, Chaparro-Riggers J, Strop P, Tampé R, Edwards R, Stroud R, Craik C, Cheng Y. Fabs Enable Single Particle cryoEM Studies of Small Proteins. Structure 2012, 20: 582-592. PMID: 22483106, PMCID: PMC3322386, DOI: 10.1016/j.str.2012.02.017.Peer-Reviewed Original ResearchCryoelectron MicroscopyEscherichia coliEscherichia coli ProteinsHumansImage Processing, Computer-AssistedImmunoglobulin Fab FragmentsModels, MolecularMolecular WeightPeptide LibraryProprotein Convertase 9Proprotein ConvertasesProtein ConformationRecombinant ProteinsSerine EndopeptidasesVesicular Glutamate Transport Proteins
2011
Self‐assembly of amelogenin proteins at the water–oil interface
Martinez‐Avila O, Wu S, Cheng Y, Lee R, Khan F, Habelitz S. Self‐assembly of amelogenin proteins at the water–oil interface. European Journal Of Oral Sciences 2011, 119: 75-82. PMID: 22243231, PMCID: PMC6339812, DOI: 10.1111/j.1600-0722.2011.00907.x.Peer-Reviewed Original ResearchConceptsSelf-assembled structuresWater-oil interfaceAtomic force microscopySubsequent fibril formationHelical nanostructuresDynamic lightReverse micellesOil emulsionsForce microscopyNanoribbon formationInitial pHElectron microscopyHydrophobic domainFibril formationNanoribbonsParallel alignmentAmelogenin cleavage productsSame conditionsEnamel biomineralizationMicroscopyHydrophilic C-terminusCleavage productsRh174FormationMicellesStructural Changes in Isometrically Contracting Insect Flight Muscle Trapped Following a Mechanical Transient
Wu S, Liu J, Reedy M, Tregear R, Winkler H, Franzini-Armstrong C, Lucaveche C, Sasaki H, Goldman Y, Reedy M, Taylor K. Structural Changes in Isometrically Contracting Insect Flight Muscle Trapped Following a Mechanical Transient. Biophysical Journal 2011, 100: 12a. DOI: 10.1016/j.bpj.2010.12.274.Peer-Reviewed Original Research
2010
Self-aligning amelogenin nanoribbons in oil–water system
He X, Wu S, Martinez-Avila O, Cheng Y, Habelitz S. Self-aligning amelogenin nanoribbons in oil–water system. Journal Of Structural Biology 2010, 174: 203-212. PMID: 21134461, PMCID: PMC3204882, DOI: 10.1016/j.jsb.2010.11.027.Peer-Reviewed Original ResearchElectron Tomography of Cryofixed, Isometrically Contracting Insect Flight Muscle Reveals Novel Actin-Myosin Interactions
Wu S, Liu J, Reedy MC, Tregear RT, Winkler H, Franzini-Armstrong C, Sasaki H, Lucaveche C, Goldman YE, Reedy MK, Taylor KA. Electron Tomography of Cryofixed, Isometrically Contracting Insect Flight Muscle Reveals Novel Actin-Myosin Interactions. PLOS ONE 2010, 5: e12643. PMID: 20844746, PMCID: PMC2936580, DOI: 10.1371/journal.pone.0012643.Peer-Reviewed Original ResearchElectron Tomography of Cryofixed, Isometrically Contracting Insect Flight Muscle Reveals Novel Actin-Myosin Interactions
Wu S, Liu J, Reedy M, Winkler H, Tregear R, Lucaveche C, Franzini-Armstrong C, Sasaki H, Goldman Y, Reedy M, Taylor K. Electron Tomography of Cryofixed, Isometrically Contracting Insect Flight Muscle Reveals Novel Actin-Myosin Interactions. Biophysical Journal 2010, 98: 216a. DOI: 10.1016/j.bpj.2009.12.1166.Peer-Reviewed Original Research
2009
Methods for identifying and averaging variable molecular conformations in tomograms of actively contracting insect flight muscle
Wu S, Liu J, Reedy MC, Winkler H, Reedy MK, Taylor KA. Methods for identifying and averaging variable molecular conformations in tomograms of actively contracting insect flight muscle. Journal Of Structural Biology 2009, 168: 485-502. PMID: 19698791, PMCID: PMC2805068, DOI: 10.1016/j.jsb.2009.08.007.Peer-Reviewed Original Research
2007
Multivariate Data Analysis of Repeat Volumes from Tomograms of Quick-Frozen Ca2+-activated Isometrically Contracting Insect Flight Muscle Reveals Unconventional Cross-Bridge Conformations
WU S, Reedy M, Winkler H, Goldman Y, Reedy M, Taylor K. Multivariate Data Analysis of Repeat Volumes from Tomograms of Quick-Frozen Ca2+-activated Isometrically Contracting Insect Flight Muscle Reveals Unconventional Cross-Bridge Conformations. Microscopy And Microanalysis 2007, 13: 368-369. DOI: 10.1017/s1431927607072029.Peer-Reviewed Original Research