2021
EpoR stimulates rapid cycling and larger red cells during mouse and human erythropoiesis
Hidalgo D, Bejder J, Pop R, Gellatly K, Hwang Y, Maxwell Scalf S, Eastman AE, Chen JJ, Zhu LJ, Heuberger JAAC, Guo S, Koury MJ, Nordsborg NB, Socolovsky M. EpoR stimulates rapid cycling and larger red cells during mouse and human erythropoiesis. Nature Communications 2021, 12: 7334. PMID: 34921133, PMCID: PMC8683474, DOI: 10.1038/s41467-021-27562-4.Peer-Reviewed Original ResearchMeSH KeywordsAdultAnimalsAntigens, CDBcl-X ProteinCD4 AntigensCell CycleCell DifferentiationCell NucleusCell SizeCell SurvivalCyclin-Dependent Kinase Inhibitor p27Embryo, MammalianErythroblastsErythrocytesErythropoiesisErythropoietinFemaleFetusHealthy VolunteersHumansIronLiverMaleMice, Inbred C57BLModels, BiologicalProtein Serine-Threonine KinasesReceptors, ErythropoietinReceptors, TransferrinReticulocytesSignal TransductionConceptsCell size regulationCell sizeSequential cell divisionsEpoR functionErythroblast survivalMouse erythroblastsCell divisionSize regulationHuman erythropoiesisErythropoietin receptorCell cycleEpoRHypoxic stressRed cell sizeHigh erythropoietinLarger red cellsWild-type miceCyclingErythroblastsRegulationHigher EPO levelsMiceRed cellsSurvivalErythropoiesisEpor Stimulates Rapid Cycling and Larger Red Cells during Mouse and Human Erythropoiesis
Hidalgo D, Bejder J, Pop R, Gellatly K, Hwang Y, Scalf S, Eastman A, Chen J, Zhu L, Heuberger J, Guo S, Koury M, Nordsborg N, Socolovsky M. Epor Stimulates Rapid Cycling and Larger Red Cells during Mouse and Human Erythropoiesis. Blood 2021, 138: 852. DOI: 10.1182/blood-2021-154403.Peer-Reviewed Original ResearchErythroid terminal differentiationCell divisionCell cycleWild-type erythroblastsAnti-apoptotic protein BclCell sizeLive-cell reporterCell cycle speedNon-redundant functionsLarger red cellsFetal liver progenitorsTransferrin receptorEIF2α kinaseEpoR functionErythroblast survivalGenetic systemProtein BclHuman erythropoiesisNegative regulatorSurvival signalsTerminal differentiationEffects of EpoEpoRMouse EpoRP27 Kip1
2020
Reprogramming progressive cells display low CAG promoter activity
Hu X, Wu Q, Zhang J, Kim J, Chen X, Hartman AA, Eastman AE, Park I, Guo S. Reprogramming progressive cells display low CAG promoter activity. Stem Cells 2020, 39: 43-54. PMID: 33075202, PMCID: PMC7821215, DOI: 10.1002/stem.3295.Peer-Reviewed Original Research2014 – FLUORESCENT CELL CYCLE TIMER ENABLED ANALYSIS OF NORMAL AND INEFFECTIVE ERYTHROPOIESIS
Modepalli S, Eastman A, Shaw C, Guo S, Hattangadi S, Kupfer G. 2014 – FLUORESCENT CELL CYCLE TIMER ENABLED ANALYSIS OF NORMAL AND INEFFECTIVE ERYTHROPOIESIS. Experimental Hematology 2020, 88: s32. DOI: 10.1016/j.exphem.2020.09.176.Peer-Reviewed Original ResearchCell cycle speedCell cycleLive-cell reporterFluorescent timer proteinsErythropoietic responseIneffective erythropoiesisFaster cycling cellsErythroblast stageFlow cytometric sortingStress hematopoiesisDiamond-Blackfan anemiaTimer proteinFusion proteinCellular factorsEarly progenitorsCell stagePrimary cell culturesSorted populationsCell cycling ratesMetabolic pathwaysCycling cellsStress erythropoiesisHuman CD34Cytometric sortingIntracellular ratioThe palette of techniques for cell cycle analysis
Eastman AE, Guo S. The palette of techniques for cell cycle analysis. FEBS Letters 2020, 594: 2084-2098. PMID: 32441778, PMCID: PMC9261528, DOI: 10.1002/1873-3468.13842.Peer-Reviewed Original ResearchCell cycleCell cycle analysisCell fate specificationCell division cycleCell cycle speedSingle-cell eraSingle-cell resolutionCell cycle progressionCell cycle dynamicsMulticellular organismsFate specificationCell cycle heterogeneityGenomic fidelityDivision cycleBiochemical machineryTissue homeostasisCycle progressionCellular growthCell cycle measurementsCycle analysisPalette of techniquesGenerational periodCycle dynamicsCentral roleCell number
2019
Cell cycle dynamics in the reprogramming of cellular identity
Hu X, Eastman AE, Guo S. Cell cycle dynamics in the reprogramming of cellular identity. FEBS Letters 2019, 593: 2840-2852. PMID: 31562821, DOI: 10.1002/1873-3468.13625.Peer-Reviewed Original ResearchConceptsCell fate reprogrammingCell cycle dynamicsCellular identityDaughter cellsGenome replicationCell cycleSpecific cell cycle phasesCell fate regulationCell cycle controlRapid cell cyclesCell cycle phasesCycle dynamicsFate regulationEpigenomic changesCycle controlFate controlReprogrammingCell typesBiochemical processesReplicationComplex mechanismsCycle phaseGenomeCellsProminent example
2015
Choosing Cell Fate Through a Dynamic Cell Cycle
Chen X, Hartman A, Guo S. Choosing Cell Fate Through a Dynamic Cell Cycle. Current Stem Cell Reports 2015, 1: 129-138. PMID: 28725536, PMCID: PMC5487535, DOI: 10.1007/s40778-015-0018-0.Peer-Reviewed Original ResearchCell fate changesCell fateCell cycle dynamicsFate changesSomatic cellsDifferentiated somatic cell typesCell cycleCell fate specificationCell fate determinationInduction of pluripotencyTranscription factor concentrationsSomatic cell typesFate specificationFate determinationCell cycle accelerationCycle dynamicsTissue homeostasisDevelopmental systemsYamanaka factorsCell typesNormal developmentPluripotencyRecent discoveryReprogrammingFate
2014
Nonstochastic Reprogramming from a Privileged Somatic Cell State
Guo S, Zi X, Schulz VP, Cheng J, Zhong M, Koochaki SH, Megyola CM, Pan X, Heydari K, Weissman SM, Gallagher PG, Krause DS, Fan R, Lu J. Nonstochastic Reprogramming from a Privileged Somatic Cell State. Cell 2014, 156: 649-662. PMID: 24486105, PMCID: PMC4318260, DOI: 10.1016/j.cell.2014.01.020.Peer-Reviewed Original ResearchConceptsSomatic cell stateCell statesAcquisition of pluripotencyMurine hematopoietic progenitorsEndogenous Oct4Cell cycle accelerationNonstochastic mannerSomatic cellsProgeny cellsPluripotent fateYamanaka factorsCell cycleHematopoietic progenitorsP53 knockdownPluripotencyReprogrammingCycling populationFactor expressionCellsFibroblastsImportant bottleneckKnockdownProgenitorsFateExpression