2019
The Replisome Mediates A-NHEJ Repair of Telomeres Lacking POT1-TPP1 Independently of MRN Function
Rai R, Gu P, Broton C, Kumar-Sinha C, Chen Y, Chang S. The Replisome Mediates A-NHEJ Repair of Telomeres Lacking POT1-TPP1 Independently of MRN Function. Cell Reports 2019, 29: 3708-3725.e5. PMID: 31825846, PMCID: PMC7001145, DOI: 10.1016/j.celrep.2019.11.012.Peer-Reviewed Original ResearchMeSH KeywordsAcid Anhydride HydrolasesAdaptor Proteins, Signal TransducingAminopeptidasesAnimalsCell Cycle ProteinsCell Line, TumorCells, CulturedCheckpoint Kinase 1Dipeptidyl-Peptidases and Tripeptidyl-PeptidasesDNA End-Joining RepairDNA Repair EnzymesDNA-Binding ProteinsDNA-Directed DNA PolymeraseExodeoxyribonucleasesHEK293 CellsHumansMiceMRE11 Homologue ProteinMultienzyme ComplexesProliferating Cell Nuclear AntigenSerine ProteasesShelterin ComplexTelomereTelomere-Binding ProteinsTelomeric Repeat Binding Protein 2ConceptsReplication protein AReplisome complexPOT1-TPP1Dysfunctional telomeresDNA damage sensor MRE11-RAD50DNA damage checkpoint responseAlternative non-homologous endNon-homologous endMRN functionChromosome endsMre11-Rad50Checkpoint responseDNA-PKTelomeric overhangMre11 nucleaseTelomere repairEnd resectionRAD-51Repair pathwaysAtaxia telangiectasiaTelomeresC-strandDNA damageReplisomeClaspin
2017
Cytogenetic Analysis of Telomere Dysfunction
Rai R, Multani AS, Chang S. Cytogenetic Analysis of Telomere Dysfunction. Methods In Molecular Biology 2017, 1587: 127-131. PMID: 28324504, DOI: 10.1007/978-1-4939-6892-3_12.Peer-Reviewed Original ResearchProbing the Telomere Damage Response
Rai R, Chang S. Probing the Telomere Damage Response. Methods In Molecular Biology 2017, 1587: 133-138. PMID: 28324505, DOI: 10.1007/978-1-4939-6892-3_13.Peer-Reviewed Original ResearchConceptsTelomere dysfunctionDNA damage response signalsDNA damage repair pathwaysTelomere damage responseΓ-H2AXDamage repair pathwaysCheckpoint sensorNbs1 complexReplicative attritionMre11-Rad50Shelterin componentsDamage responseTelomeric DNADysfunctional telomeresRepair pathwaysDownstream effectorsComplete deletionTelomeresDNAPathwayTRF2Chk2Chk1KinaseEffectors
2016
Pot1 OB-fold mutations unleash telomere instability to initiate tumorigenesis
Gu P, Wang Y, Bisht KK, Wu L, Kukova L, Smith EM, Xiao Y, Bailey SM, Lei M, Nandakumar J, Chang S. Pot1 OB-fold mutations unleash telomere instability to initiate tumorigenesis. Oncogene 2016, 36: 1939-1951. PMID: 27869160, PMCID: PMC5383532, DOI: 10.1038/onc.2016.405.Peer-Reviewed Original ResearchConceptsComplex cytogenetic rearrangementsHuman cancersInvasive breast carcinomaAberrant DNA damageMouse mammary epitheliumBreast carcinomaMammary epitheliumHematopoietic malignanciesConditional deletionAlternative non-homologous endChromosomal aberrationsCancer initiationRepair responseFamilial mutationsOncogenic mutationsCytogenetic rearrangementsTumorigenesisCancerDNA damageMutationsGenetic changesCarcinomaDNA damage responseMalignancy
2014
Pot1a Prevents Telomere Dysfunction and ATM-Dependent Neuronal Loss
Lee Y, Brown EJ, Chang S, McKinnon PJ. Pot1a Prevents Telomere Dysfunction and ATM-Dependent Neuronal Loss. Journal Of Neuroscience 2014, 34: 7836-7844. PMID: 24899707, PMCID: PMC4044246, DOI: 10.1523/jneurosci.4245-13.2014.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, NewbornAtaxia Telangiectasia Mutated ProteinsBeta-GalactosidaseBrainCell CycleCell Cycle ProteinsCells, CulturedDNA DamageDNA-Binding ProteinsEmbryo, MammalianFemaleGene Expression RegulationMaleMiceMice, TransgenicNestinNeuronsShelterin ComplexTelomereTelomere-Binding Proteins
2013
p16INK4a protects against dysfunctional telomere–induced ATR-dependent DNA damage responses
Wang Y, Sharpless N, Chang S. p16INK4a protects against dysfunctional telomere–induced ATR-dependent DNA damage responses. Journal Of Clinical Investigation 2013, 123: 4489-4501. PMID: 24091330, PMCID: PMC3784543, DOI: 10.1172/jci69574.Peer-Reviewed Original ResearchMeSH KeywordsAgingAnimalsApoptosisAtaxia Telangiectasia Mutated ProteinsBone Marrow TransplantationCell ProliferationCells, CulturedCyclin-Dependent Kinase Inhibitor p16Cyclin-Dependent Kinase Inhibitor p21DNA DamageDNA RepairDNA-Binding ProteinsFemaleHematopoiesisHematopoietic Stem CellsIntestine, SmallMaleMiceMice, SCIDMice, TransgenicProtein StabilitySequence DeletionSpleenTelomereTelomere HomeostasisTumor Suppressor Protein p53ConceptsHematopoietic cellsDeletion of p21P21-dependent cell cycle arrestOrgan impairmentTelomere dysfunctionCell cycle arrestMouse modelDNA damage responseSmall intestineFunctional defectsCell functionProliferative capacityP53-dependent apoptosisCycle arrestDysfunctional telomeresCellular senescenceDysfunctionP53-dependent DNA damage responseProliferative cellsHematopoietic systemProtective functionTumor suppressorProliferative defectP53 stabilizationCellsThe mINO80 chromatin remodeling complex is required for efficient telomere replication and maintenance of genome stability
Min JN, Tian Y, Xiao Y, Wu L, Li L, Chang S. The mINO80 chromatin remodeling complex is required for efficient telomere replication and maintenance of genome stability. Cell Research 2013, 23: 1396-1413. PMID: 23979016, PMCID: PMC3847565, DOI: 10.1038/cr.2013.113.Peer-Reviewed Original ResearchMeSH KeywordsAllelesAnimalsCells, CulturedCellular SenescenceChromatinChromatin Assembly and DisassemblyDNA Breaks, Double-StrandedDNA HelicasesDNA RepairDNA ReplicationFibroblastsGenomic InstabilityHydroxyureaMiceMice, Inbred C57BLMice, KnockoutMutationNucleic Acid Synthesis InhibitorsTelomereTumor Suppressor Protein p53ConceptsHomology-directed DNA repairEfficient telomere replicationGenome stabilityTelomere replicationDependent DNA damage responseDNA double-strand breaksDNA damage responseDNA damage fociMammalian cell linesATPase catalytic subunitConditional knockout approachDouble-strand breaksINO80 chromatinChromatin remodelingOrganismal functionTranscriptional regulationFragile telomeresDamage responseDNA replicationCatalytic subunitDamage fociDysfunctional telomeresSingle-strand DNADNA repairKnockout approach
2011
Essential roles for Pot1b in HSC self-renewal and survival
Wang Y, Shen MF, Chang S. Essential roles for Pot1b in HSC self-renewal and survival. Blood 2011, 118: 6068-6077. PMID: 21948176, PMCID: PMC3234665, DOI: 10.1182/blood-2011-06-361527.Peer-Reviewed Original ResearchAgingAnemia, AplasticAnimalsApoptosisBone Marrow CellsBone Marrow DiseasesBone Marrow Failure DisordersCell DifferentiationCell SurvivalCells, CulturedChromosomes, MammalianDNA DamageDNA-Binding ProteinsFemaleHematopoietic Stem CellsHemoglobinuria, ParoxysmalMaleMiceMice, Inbred ICRMice, Mutant StrainsMice, SCIDTelomereTumor Suppressor Protein p53Cytogenetic Analysis of Telomere Dysfunction
Multani A, Chang S. Cytogenetic Analysis of Telomere Dysfunction. Methods In Molecular Biology 2011, 735: 139-143. PMID: 21461818, PMCID: PMC3725757, DOI: 10.1007/978-1-61779-092-8_13.Peer-Reviewed Original ResearchA conserved motif within RAP1 has diversified roles in telomere protection and regulation in different organisms
Chen Y, Rai R, Zhou ZR, Kanoh J, Ribeyre C, Yang Y, Zheng H, Damay P, Wang F, Tsujii H, Hiraoka Y, Shore D, Hu HY, Chang S, Lei M. A conserved motif within RAP1 has diversified roles in telomere protection and regulation in different organisms. Nature Structural & Molecular Biology 2011, 18: 213-221. PMID: 21217703, PMCID: PMC3688267, DOI: 10.1038/nsmb.1974.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid MotifsAmino Acid SequenceAnimalsCells, CulturedCrystallography, X-RayFungal ProteinsHeLa CellsHumansModels, MolecularMolecular Sequence DataMutationNuclear Magnetic Resonance, BiomolecularProtein BindingProtein Interaction Domains and MotifsSaccharomycetalesSchizosaccharomycesShelterin ComplexTelomereTelomere-Binding ProteinsTelomeric Repeat Binding Protein 2ConceptsRap1 C-terminusDifferent interacting partnersProtein Rap1Fission yeastTelomere protectionInteracting partnerTranscriptional silencingDifferent organismsC-terminusFunctional analysisInteraction moduleYeastRap1Different functionsOrganismsTaz1Sir3TRF2MammalianTelomeresSilencingMammalsMotifCrystal structureRegulation
2010
The function of classical and alternative non‐homologous end‐joining pathways in the fusion of dysfunctional telomeres
Rai R, Zheng H, He H, Luo Y, Multani A, Carpenter PB, Chang S. The function of classical and alternative non‐homologous end‐joining pathways in the fusion of dysfunctional telomeres. The EMBO Journal 2010, 29: 2598-2610. PMID: 20588252, PMCID: PMC2928694, DOI: 10.1038/emboj.2010.142.Peer-Reviewed Original ResearchAnimalsAntigens, NuclearCells, CulturedChromosomal Proteins, Non-HistoneDNA RepairDNA-Binding ProteinsHumansIntracellular Signaling Peptides and ProteinsKu AutoantigenMiceMice, KnockoutShelterin ComplexTelomereTelomere-Binding ProteinsTelomeric Repeat Binding Protein 2Tumor Suppressor p53-Binding Protein 1
2009
Gcn5 and SAGA Regulate Shelterin Protein Turnover and Telomere Maintenance
Atanassov BS, Evrard YA, Multani AS, Zhang Z, Tora L, Devys D, Chang S, Dent SY. Gcn5 and SAGA Regulate Shelterin Protein Turnover and Telomere Maintenance. Molecular Cell 2009, 35: 352-364. PMID: 19683498, PMCID: PMC2749492, DOI: 10.1016/j.molcel.2009.06.015.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCells, CulturedChromosome AberrationsDNA Breaks, Double-StrandedDNA RepairGene DeletionHumansMiceModels, BiologicalP300-CBP Transcription FactorsProteasome InhibitorsProtein StabilityShelterin ComplexTelomereTelomere-Binding ProteinsTelomeric Repeat Binding Protein 1Thiolester HydrolasesUbiquitin ThiolesteraseConceptsSAGA complexTelomeric shelterin complexDeletion of GCN5Accessibility of chromatinBona fide componentTRF1 levelsGene regulationShelterin complexTelomere maintenanceMammalian cellsTranscription factorsGCN5DNA repairFide componentRepair proteinsTelomere dysfunctionProtein turnoverHuman cellsUbiquitin-specific protease 22Biochemical studiesOverexpression of USP22USP22ComplexesTurnoverChromatin
2007
Dysfunctional telomeres activate an ATM‐ATR‐dependent DNA damage response to suppress tumorigenesis
Guo X, Deng Y, Lin Y, Cosme‐Blanco W, Chan S, He H, Yuan G, Brown EJ, Chang S. Dysfunctional telomeres activate an ATM‐ATR‐dependent DNA damage response to suppress tumorigenesis. The EMBO Journal 2007, 26: 4709-4719. PMID: 17948054, PMCID: PMC2080807, DOI: 10.1038/sj.emboj.7601893.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAtaxia Telangiectasia Mutated ProteinsCell Cycle ProteinsCells, CulturedDNA DamageDNA-Binding ProteinsEmbryo, MammalianFibroblastsMiceNeoplasmsProtein Serine-Threonine KinasesRNA, MessengerShelterin ComplexTelomereTelomere-Binding ProteinsTelomeric Repeat Binding Protein 2Tumor Suppressor Proteins
2006
Pot1 Deficiency Initiates DNA Damage Checkpoint Activation and Aberrant Homologous Recombination at Telomeres
Wu L, Multani AS, He H, Cosme-Blanco W, Deng Y, Deng JM, Bachilo O, Pathak S, Tahara H, Bailey SM, Deng Y, Behringer RR, Chang S. Pot1 Deficiency Initiates DNA Damage Checkpoint Activation and Aberrant Homologous Recombination at Telomeres. Cell 2006, 126: 49-62. PMID: 16839876, DOI: 10.1016/j.cell.2006.05.037.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell Cycle ProteinsCells, CulturedCellular SenescenceChromosome AberrationsDNA DamageDNA RepairDNA-Binding ProteinsGene SilencingGenes, cdcGenomic InstabilityMiceMice, KnockoutNuclear ProteinsProtein IsoformsRecombination, GeneticSequence HomologyShelterin ComplexSister Chromatid ExchangeTelomereTelomere-Binding ProteinsConceptsAberrant homologous recombinationHomologous recombinationTelomere sister chromatid exchangeDNA damage checkpoint activationOverall genomic stabilityTelomere length regulationDNA damage machineryDNA damage responseT-loop structureChromosomal end protectionMammalian telomeresPOT1 proteinsTelomere integrityCheckpoint activationGenomic stabilityLength regulationMouse genomeDamage responseEnd protectionReplicative senescenceDNA breaksRich overhangTelomeresChromosomal instabilityConditional deletion
2004
Essential role of limiting telomeres in the pathogenesis of Werner syndrome
Chang S, Multani AS, Cabrera NG, Naylor ML, Laud P, Lombard D, Pathak S, Guarente L, DePinho RA. Essential role of limiting telomeres in the pathogenesis of Werner syndrome. Nature Genetics 2004, 36: 877-882. PMID: 15235603, DOI: 10.1038/ng1389.Peer-Reviewed Original ResearchConceptsWerner syndromeCultured cellsComplex cellular phenotypesElevated genomic instabilityDNA damage fociPremature aging syndromesWRN deficiencyReplicative senescenceCellular phenotypesGenomic instabilityAging syndromesGenetic dataMutational inactivationPremature senescenceChromosomal instabilityTelomerase expressionHair grayingPremature agingDisease phenotypeEssential roleWRNMice nullSenescenceAutosomal recessive diseaseType II diabetes
2001
Rescue of a telomere length defect of Nijmegen breakage syndrome cells requires NBS and telomerase catalytic subunit
Ranganathan V, Heine W, Ciccone D, Rudolph K, Wu X, Chang S, Hai H, Ahearn I, Livingston D, Resnick I, Rosen F, Seemanova E, Jarolim P, DePinho R, Weaver D. Rescue of a telomere length defect of Nijmegen breakage syndrome cells requires NBS and telomerase catalytic subunit. Current Biology 2001, 11: 962-966. PMID: 11448772, DOI: 10.1016/s0960-9822(01)00267-6.Peer-Reviewed Original ResearchConceptsNijmegen breakage syndromeNBS fibroblastsNBS patientsCatalytic subunitChromosome instabilityNijmegen breakage syndrome cellsDNA repair complexRare human diseasesTRF proteinsTelomere extensionNBS cellsTelomere endsRepair complexAccessory proteinsBreakage syndromeGrowth cessationHuman diseasesCancer predispositionLength defectsTelomeresPremature growth cessationProliferative capacitySubunitsProteinGamma irradiation damage