2024
CASCADES, a novel SOX2 super‐enhancer‐associated long noncoding RNA, regulates cancer stem cell specification and differentiation in glioblastoma
Shahzad U, Nikolopoulos M, Li C, Johnston M, Wang J, Sabha N, Varn F, Riemenschneider A, Krumholtz S, Krishnamurthy P, Smith C, Karamchandani J, Watts J, Verhaak R, Gallo M, Rutka J, Das S. CASCADES, a novel SOX2 super‐enhancer‐associated long noncoding RNA, regulates cancer stem cell specification and differentiation in glioblastoma. Molecular Oncology 2024 PMID: 39323013, DOI: 10.1002/1878-0261.13735.Peer-Reviewed Original ResearchCancer stem cellsGlioma CSCsPresence of cancer stem cellsCancer stem cell compartmentPrimary malignant brain tumorGlioma cancer stem cellsMalignant brain tumorsCancer-specific mannerMedian survivalTumor recurrenceTreatment resistanceStem cell specificationRegulation of stemnessTumor developmentRegulation of Sox2Brain tumorsNeuronal lineageStem cellsGlioblastomaTherapeutic targetSOX2Cell RepositoryCell-specificTumorLong noncoding RNAs
2023
EPCO-37. DISSECTING GBM EVOLUTION FOLLOWING STANDARD-OF-CARE BY LARGE-SCALE LONGITUDINAL SINGLE NUCLEUS RNA-SEQUENCING
Nomura M, Spitzer A, Johnson K, Garofano L, Nehar-Belaid D, Oh Y, Anderson K, Najac R, Bussema L, Varn F, D’Angelo F, Chowdhury T, Migliozzi S, Park J, Ermini L, Golebiewska A, Niclou S, Das S, Paek S, Moon H, Mathon B, Di Stefano A, Bielle F, Laurenge A, Sanson M, Tanaka S, Saito N, Keir S, Ashley D, Huse J, Yung W, Lasorella A, Iavarone A, Verhaak R, Suva M, Tirosh I. EPCO-37. DISSECTING GBM EVOLUTION FOLLOWING STANDARD-OF-CARE BY LARGE-SCALE LONGITUDINAL SINGLE NUCLEUS RNA-SEQUENCING. Neuro-Oncology 2023, 25: v132-v132. PMCID: PMC10639295, DOI: 10.1093/neuonc/noad179.0499.Peer-Reviewed Original ResearchSingle-nucleus RNA sequencingLarge-scale longitudinal cohortTME compositionRecurrent samplesGood clinical courseInitial tumor resectionMajority of patientsTumor microenvironment cellsPrimary tumor samplesMGMT methylation statusTME changesClinical courseRNA sequencingTherapy failureLikely respondersTumor resectionDisease progressionNucleus RNA sequencingLongitudinal cohortReciprocal increaseTumor samplesMicroenvironment cellsMalignant cell fractionGlioblastomaRecurrenceCorrecting the drug development paradigm for glioblastoma requires serial tissue sampling
Singh K, Hotchkiss K, Parney I, De Groot J, Sahebjam S, Sanai N, Platten M, Galanis E, Lim M, Wen P, Minniti G, Colman H, Cloughesy T, Mehta M, Geurts M, Arrillaga-Romany I, Desjardins A, Tanner K, Short S, Arons D, Duke E, Wick W, Bagley S, Ashley D, Kumthekar P, Verhaak R, Chalmers A, Patel A, Watts C, Fecci P, Batchelor T, Weller M, Vogelbaum M, Preusser M, Berger M, Khasraw M. Correcting the drug development paradigm for glioblastoma requires serial tissue sampling. Nature Medicine 2023, 29: 2402-2405. PMID: 37488293, DOI: 10.1038/s41591-023-02464-8.Peer-Reviewed Original Research
2018
Discordant inheritance of chromosomal and extrachromosomal DNA elements contributes to dynamic disease evolution in glioblastoma
deCarvalho A, Kim H, Poisson L, Winn M, Mueller C, Cherba D, Koeman J, Seth S, Protopopov A, Felicella M, Zheng S, Multani A, Jiang Y, Zhang J, Nam D, Petricoin E, Chin L, Mikkelsen T, Verhaak R. Discordant inheritance of chromosomal and extrachromosomal DNA elements contributes to dynamic disease evolution in glioblastoma. Nature Genetics 2018, 50: 708-717. PMID: 29686388, PMCID: PMC5934307, DOI: 10.1038/s41588-018-0105-0.Peer-Reviewed Original ResearchConceptsExtrachromosomal DNA elementsDNA elementsChromosomal DNA alterationsDNA alterationsSomatic driver alterationsGenomic heterogeneitySingle nucleotide variantsOffspring cellsDiscordant inheritanceExtrachromosomal elementsEcDNAsGBM evolutionOncogenic potentialGBM samplesInheritance patternChromosomal alterationsSelection dynamicsModel systemCell culturesOrthotopic xenograft modelDriver alterationsXenograft modelOncogene amplificationCellsGlioblastoma