2020
Improving the Pharmacodynamics and In Vivo Activity of ENPP1‐Fc Through Protein and Glycosylation Engineering
Stabach PR, Zimmerman K, Adame A, Kavanagh D, Saeui CT, Agatemor C, Gray S, Cao W, De La Cruz EM, Yarema KJ, Braddock DT. Improving the Pharmacodynamics and In Vivo Activity of ENPP1‐Fc Through Protein and Glycosylation Engineering. Clinical And Translational Science 2020, 14: 362-372. PMID: 33064927, PMCID: PMC7877847, DOI: 10.1111/cts.12887.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsArea Under CurveDisease Models, AnimalEnzyme Replacement TherapyGlycosylationHalf-LifeHistocompatibility Antigens Class IHumansMaleMice, TransgenicPhosphoric Diester HydrolasesProtein EngineeringProtein Structure, TertiaryPyrophosphatasesReceptors, FcRecombinant Fusion ProteinsVascular CalcificationConceptsProtein engineeringO-BuN-glycansGlycosylation engineeringCellular recyclingENPP1-deficient miceTerminal sialylationBiomanufacturing platformProtein therapeuticsCalcification disordersSialylationCellsVivo activityFc neonatal receptorTherapeuticsArterial calcificationProteinMurine modelManNAcEnzyme replacementNeonatal receptorEfficacious levelsGeneral strategyThree-prong strategyDrug potency
2013
Molecular Basis of Purinergic Signal Metabolism by Ectonucleotide Pyrophosphatase/Phosphodiesterases 4 and 1 and Implications in Stroke*♦
Albright RA, Ornstein DL, Cao W, Chang WC, Robert D, Tehan M, Hoyer D, Liu L, Stabach P, Yang G, De La Cruz EM, Braddock DT. Molecular Basis of Purinergic Signal Metabolism by Ectonucleotide Pyrophosphatase/Phosphodiesterases 4 and 1 and Implications in Stroke*♦. Journal Of Biological Chemistry 2013, 289: 3294-3306. PMID: 24338010, PMCID: PMC3916532, DOI: 10.1074/jbc.m113.505867.Peer-Reviewed Original ResearchConceptsExtracellular membrane proteinsMembrane proteinsSubstrate specificityMolecular basisHigh-resolution crystal structuresResolution crystal structureComparative structural analysisATP hydrolysisNPP1Brain vascular endotheliumCorresponding regionTerminal phosphateLow nanomolar concentrationsPurinergic signalsPlatelet aggregationProteinATPEnzymeNanomolar concentrationsVascular endotheliumPhosphodiesterases 4Ap3AMetabolismSurface of chondrocytesTissue mineralization
2009
The structure of the ankyrin-binding site of β-spectrin reveals how tandem spectrin-repeats generate unique ligand-binding properties
Stabach PR, Simonović I, Ranieri MA, Aboodi MS, Steitz TA, Simonović M, Morrow JS. The structure of the ankyrin-binding site of β-spectrin reveals how tandem spectrin-repeats generate unique ligand-binding properties. Blood 2009, 113: 5377-5384. PMID: 19168783, PMCID: PMC2689040, DOI: 10.1182/blood-2008-10-184291.Peer-Reviewed Original ResearchAlanineAmino Acid MotifsAmino Acid SequenceAnkyrinsBinding SitesCrystallography, X-RayHumansLigandsMechanotransduction, CellularModels, MolecularMolecular Sequence DataMutagenesis, Site-DirectedProtein BindingProtein FoldingProtein Interaction MappingProtein Structure, TertiaryRepetitive Sequences, Amino AcidSequence Homology, Amino AcidSpectrin
2000
βiv Spectrin, a New Spectrin Localized at Axon Initial Segments and Nodes of Ranvier in the Central and Peripheral Nervous System
Berghs S, Aggujaro D, Dirkx R, Maksimova E, Stabach P, Hermel J, Zhang J, Philbrick W, Slepnev V, Ort T, Solimena M. βiv Spectrin, a New Spectrin Localized at Axon Initial Segments and Nodes of Ranvier in the Central and Peripheral Nervous System. Journal Of Cell Biology 2000, 151: 985-1002. PMID: 11086001, PMCID: PMC2174349, DOI: 10.1083/jcb.151.5.985.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsAnkyrinsAutoantigensAxonsBlood ProteinsBrain ChemistryChromosomesCloning, MolecularCOS CellsCytoplasmCytoskeletonDiabetic NeuropathiesGene ExpressionHippocampusHumansIslets of LangerhansMaleMembrane ProteinsMiceMolecular Sequence DataNerve Tissue ProteinsPhosphoproteinsProtein Structure, TertiaryProtein Tyrosine PhosphatasesRanvier's NodesRatsRats, Sprague-DawleyReceptor-Like Protein Tyrosine Phosphatases, Class 8RNA, MessengerSciatic NerveSignal TransductionSodium ChannelsSpectrinConceptsPleckstrin homology domainHomology domainBetaIV spectrinActin-binding domainAxon initial segmentPutative SH3Alternative splicingSpectrin geneSpectrin repeatsDetergent extractabilityCell adhesion moleculeNodes of RanvierSubcellular fractionationTerminal halfAdditional isoformsDistinct isoformsLong isoformNorthern blotSpectrinAbundant expressionΒIV-spectrinIsoformsSpectrin antibodiesEmbryonic day 19Initial segment
1998
Utilization of an 86bp exon generates a novel adducin isoform (β4) lacking the MARCKS homology domain1The first two authors contributed equally to this work.1
Sinard J, Stewart G, Stabach P, Argent A, Gilligan D, Morrow J. Utilization of an 86bp exon generates a novel adducin isoform (β4) lacking the MARCKS homology domain1The first two authors contributed equally to this work.1. Biochimica Et Biophysica Acta 1998, 1396: 57-66. PMID: 9524222, DOI: 10.1016/s0167-4781(97)00167-x.Peer-Reviewed Original ResearchMeSH KeywordsAlternative SplicingAmino Acid SequenceBase SequenceCalmodulin-Binding ProteinsCloning, MolecularExonsHumansIntracellular Signaling Peptides and ProteinsIsomerismMembrane ProteinsMolecular Sequence DataMyristoylated Alanine-Rich C Kinase SubstrateOrgan SpecificityPolymerase Chain ReactionProtein Structure, TertiaryProteinsSequence Homology, Amino AcidSequence Homology, Nucleic AcidTranscription, GeneticConceptsNovel amino acidAmino acidsBeta-adducinNew isoformHuman bone marrow cDNA libraryBone marrow cDNA libraryDifferent reading framesCalcium/calmodulinLysine-rich sequenceNT-2 cellsProtein kinase CGenomic clonesGenomic mapNew amino acidsAlternate exonsActin crossCDNA libraryReading frameSplice consensus sequenceNew exonsNovel isoformConsensus sequenceStop codonKinase CExons