2019
Corticostriatal plasticity in the nucleus accumbens core
Bamford NS, Wang W. Corticostriatal plasticity in the nucleus accumbens core. Journal Of Neuroscience Research 2019, 97: 1559-1578. PMID: 31298422, PMCID: PMC6801067, DOI: 10.1002/jnr.24494.Peer-Reviewed Original ResearchConceptsPrefrontal cortical projectionsCortical projectionsNAc coreDrug reinstatementSaline-treated miceSpiny projection neuronsMotor learningNew therapeutic targetsNucleus accumbens coreUse of amphetaminesStriatal glutamateGlutamate releaseCortical stimulationPresynaptic depressionProjection neuronsStriatal circuitryD1 receptorsDrug challengeLocomotor sensitizationMale miceCorticostriatal plasticityGlutamatergic boutonsDopamine releaseNucleus accumbensParadoxical excitationThe Striatum’s Role in Executing Rational and Irrational Economic Behaviors
Bamford IJ, Bamford NS. The Striatum’s Role in Executing Rational and Irrational Economic Behaviors. The Neuroscientist 2019, 25: 475-490. PMID: 30678530, PMCID: PMC6656632, DOI: 10.1177/1073858418824256.Peer-Reviewed Original ResearchConceptsIrrational economic behaviorExecutive functionStriatum's roleMotor learningMotor movementsSensory stimulationExcitatory glutamatergic activityBehavioral economicsHabit formationNovel stimulationNeural pathwaysReflexive actionDecision makingReflexive movementsRational behaviorEconomic behaviorRational responseRewardDopamine releaseBehaviorStriatumGlutamatergic activityLearningCortexThalamus
2013
Acetylcholine Encodes Long-Lasting Presynaptic Plasticity at Glutamatergic Synapses in the Dorsal Striatum after Repeated Amphetamine Exposure
Wang W, Darvas M, Storey GP, Bamford IJ, Gibbs JT, Palmiter RD, Bamford NS. Acetylcholine Encodes Long-Lasting Presynaptic Plasticity at Glutamatergic Synapses in the Dorsal Striatum after Repeated Amphetamine Exposure. Journal Of Neuroscience 2013, 33: 10405-10426. PMID: 23785153, PMCID: PMC3685836, DOI: 10.1523/jneurosci.0014-13.2013.Peer-Reviewed Original ResearchMeSH KeywordsAcetylcholineAdrenergic Uptake InhibitorsAmphetamineAnimalsCholine O-AcetyltransferaseDependovirusElectrophysiological PhenomenaExcitatory Postsynaptic PotentialsGenetic VectorsGlutamic AcidInterneuronsLocomotionMaleMaze LearningMiceMice, Inbred C57BLMice, KnockoutMotor ActivityNeostriatumNeuronal PlasticityPostural BalanceReceptors, Dopamine D1Receptors, Dopamine D2Receptors, PresynapticSynapsesConceptsGlutamate releaseCorticostriatal activityDirect pathway medium spiny neuronsMedium spiny neuronsCorticostriatal terminalsAcetylcholine releaseAmphetamine treatmentAmphetamine challengePresynaptic depressionAmphetamine exposurePresynaptic potentiationChronic decreaseSpiny neuronsDrug challengeLocomotor sensitizationGlutamatergic synapsesBrain slicesCorticostriatal signalingParkinson's diseaseDorsal striatumLocomotor responseDopamine regulationDrug dependenceStriatal activityActive interneurons
2011
Imaging Presynaptic Exocytosis in Corticostriatal Slices
Wong MY, Sulzer D, Bamford NS. Imaging Presynaptic Exocytosis in Corticostriatal Slices. Methods In Molecular Biology 2011, 793: 363-376. PMID: 21913113, PMCID: PMC6486818, DOI: 10.1007/978-1-61779-328-8_24.Peer-Reviewed Original ResearchMeSH KeywordsExocytosisFluorescent DyesGlutamic AcidMicroscopy, ConfocalMolecular ImagingNeostriatumPhotonsPotassiumSynapsesConceptsGlutamatergic corticostriatal terminalsCorticostriatal terminalsCorticostriatal slicesSynaptic dysfunctionBrain slicesSynaptic functionNeuropsychiatric disordersNeurodegenerative diseasesChromaffin cellsHuntington's diseaseDiseaseDrug addictionPresynaptic exocytosisFM1-43Synaptic vesicle fusionCell culturesFluorescent endocytic tracersParkinsonismDysfunctionSlices
2004
Dopamine Modulates Release from Corticostriatal Terminals
Bamford NS, Robinson S, Palmiter RD, Joyce JA, Moore C, Meshul CK. Dopamine Modulates Release from Corticostriatal Terminals. Journal Of Neuroscience 2004, 24: 9541-9552. PMID: 15509741, PMCID: PMC6730145, DOI: 10.1523/jneurosci.2891-04.2004.Peer-Reviewed Original ResearchConceptsCorticostriatal terminalsMedium spiny neuronsD2 receptorsDD miceSpiny neuronsD2-like receptor agonist quinpiroleExtracellular striatal glutamateFM1-43 destainingNormal striatal functionReserpine-treated miceCortical glutamatergic neuronsReceptor agonist quinpiroleActivity-dependent releaseMidbrain dopamine neuronsFM1-43Styryl dye FM1-43Aberrant cytoarchitectureGlutamate densityStriatal stimulationStriatal glutamateDopamine depletionAgonist quinpiroleControl miceDopamine deficiencyGlutamatergic neuronsHeterosynaptic Dopamine Neurotransmission Selects Sets of Corticostriatal Terminals
Bamford NS, Zhang H, Schmitz Y, Wu NP, Cepeda C, Levine MS, Schmauss C, Zakharenko SS, Zablow L, Sulzer D. Heterosynaptic Dopamine Neurotransmission Selects Sets of Corticostriatal Terminals. Neuron 2004, 42: 653-663. PMID: 15157425, DOI: 10.1016/s0896-6273(04)00265-x.Peer-Reviewed Original ResearchMeSH KeywordsAfferent PathwaysAmphetamineAnimalsCalcium SignalingCerebral CortexDopamineElectric StimulationExcitatory Postsynaptic PotentialsExocytosisFeedbackGlutamic AcidMiceMice, Inbred C57BLMice, KnockoutNeostriatumNeural InhibitionPresynaptic TerminalsPyridinium CompoundsQuaternary Ammonium CompoundsReceptors, Dopamine D2Substantia NigraSynaptic TransmissionSynaptic VesiclesConceptsMedium spiny neuronsCorticostriatal terminalsDirect presynaptic effectIndividual presynaptic terminalsStriatal dopamine releaseEffects of dopamineHigh-frequency stimulationVoluntary motor movementDrugs of abuseCorticostriatal afferentsMSN excitabilityPresynaptic effectsCorticostriatal inputsCorticostriatal synapsesActivity of subsetsInhibitory modulationSpiny neuronsD2 receptorsDopamine releaseFrequency stimulationDopamine inputPresynaptic terminalsElectrical stimulationHeterosynaptic inhibitionSynaptic connections