Featured Publications
Unsupervised inter-frame motion correction for whole-body dynamic PET using convolutional long short-term memory in a convolutional neural network
Guo X, Zhou B, Pigg D, Spottiswoode B, Casey ME, Liu C, Dvornek NC. Unsupervised inter-frame motion correction for whole-body dynamic PET using convolutional long short-term memory in a convolutional neural network. Medical Image Analysis 2022, 80: 102524. PMID: 35797734, PMCID: PMC10923189, DOI: 10.1016/j.media.2022.102524.Peer-Reviewed Original ResearchConceptsConvolutional neural networkNeural networkConvolutional long short-term memory (ConvLSTM) layersDeep learning-based frameworkConvolutional long short-term memoryLong short-term memory layersDeep learning baselinesLong short-term memoryDynamic temporal featuresLearning-based frameworkDeep learning approachShort-term memory layersTracer distribution changeMotion estimation networkMotion prediction errorInference timeEstimation networkLearning baselinesNon-rigid registration methodLearning approachMotion correction methodMemory layerShort-term memoryTemporal featuresRegistration method
2024
Deep Learning-based Dynamic PET Intra-frame Motion Correction and Integration with Inter-frame Motion Estimation
Guo X, Tsai Y, Liu Q, Guo L, Valadez G, Dvornek N, Liu C. Deep Learning-based Dynamic PET Intra-frame Motion Correction and Integration with Inter-frame Motion Estimation. 2024, 00: 1-1. DOI: 10.1109/nss/mic/rtsd57108.2024.10657268.Peer-Reviewed Original ResearchIntra-frame motionMotion correctionGated imagesLearning-based registration approachesDeep learning-based worksInter-frame motion estimationConventional image registrationLearning-based worksImage registrationMotion estimation processMotion estimation frameworkInter-frame registrationRespiratory gatingImprove image sharpnessInter-frameInference timeMotion estimationReconstructed framesDynamic PET datasetsGeneralization abilityPET imagingConventional registrationDynamic PET imagesImprove image qualityComputational inefficiencyCLEFT: Language-Image Contrastive Learning with Efficient Large Language Model and Prompt Fine-Tuning
Du Y, Chang B, Dvornek N. CLEFT: Language-Image Contrastive Learning with Efficient Large Language Model and Prompt Fine-Tuning. Lecture Notes In Computer Science 2024, 15012: 465-475. DOI: 10.1007/978-3-031-72390-2_44.Peer-Reviewed Original ResearchContrastive Language-Image Pre-trainingLanguage modelState-of-the-art performanceSelf-supervised representation learningContrastive learning methodFine-tuningProlonged training timeBERT encoderContrastive learningRepresentation learningClass labelsGPU resourcesTraining samplesTraining timeMammography datasetModel sizePre-trainingLearning methodsEfficient frameworkVisual modelRichness of informationDatasetClinical diagnostic dataLearningMedical applicationsPrior knowledge-guided vision-transformer-based unsupervised domain adaptation for intubation prediction in lung disease at one week
Yang J, Henao J, Dvornek N, He J, Bower D, Depotter A, Bajercius H, de Mortanges A, You C, Gange C, Ledda R, Silva M, Dela Cruz C, Hautz W, Bonel H, Reyes M, Staib L, Poellinger A, Duncan J. Prior knowledge-guided vision-transformer-based unsupervised domain adaptation for intubation prediction in lung disease at one week. Computerized Medical Imaging And Graphics 2024, 118: 102442. PMID: 39515190, DOI: 10.1016/j.compmedimag.2024.102442.Peer-Reviewed Original ResearchUnsupervised domain adaptationSpatial prior informationDomain adaptationLabeled dataData-driven approachUnsupervised domain adaptation modelMedical image analysis tasksImage analysis tasksTransformer-based modelsMedical image analysisPrior informationOutcome prediction tasksAdversarial trainingDistribution alignmentDomain shiftAttention headsClass tokenPoor generalizationAnalysis tasksTarget domainPrediction taskData distributionKnowledge-guidedLocal weightsMedical imagesMine yOur owN Anatomy: Revisiting Medical Image Segmentation With Extremely Limited Labels
You C, Dai W, Liu F, Min Y, Dvornek N, Li X, Clifton D, Staib L, Duncan J. Mine yOur owN Anatomy: Revisiting Medical Image Segmentation With Extremely Limited Labels. IEEE Transactions On Pattern Analysis And Machine Intelligence 2024, 46: 11136-11151. PMID: 39269798, DOI: 10.1109/tpami.2024.3461321.Peer-Reviewed Original ResearchMedical image segmentationImage segmentationMedical image segmentation frameworkContext of medical image segmentationLong-tailed class distributionStrong data augmentationsIntra-class variationsSemi-supervised settingData imbalance issueImage segmentation frameworkMedical image analysisMedical image dataSupervision signalsContrastive learningBenchmark datasetsUnsupervised mannerLabel setsData augmentationSegmentation frameworkDomain expertisePseudo-codeImbalance issueModel trainingMedical imagesSegmentation modelCascaded Multi-path Shortcut Diffusion Model for Medical Image Translation
Zhou Y, Chen T, Hou J, Xie H, Dvornek N, Zhou S, Wilson D, Duncan J, Liu C, Zhou B. Cascaded Multi-path Shortcut Diffusion Model for Medical Image Translation. Medical Image Analysis 2024, 98: 103300. PMID: 39226710, DOI: 10.1016/j.media.2024.103300.Peer-Reviewed Original ResearchGenerative adversarial networkMedical image translationImage translationState-of-the-art methodsImage-to-image translationMedical image datasetsImage translation tasksImage-to-imageState-of-the-artMedical image processingHigh-quality translationsUncertainty estimationCascaded pipelineAdversarial networkImage datasetsSub-tasksTranslation qualityTranslation performanceTranslation tasksImage processingTranslation resultsDM methodPrior imageRobust performanceExperimental resultsSpectral Brain Graph Neural Network for Prediction of Anxiety in Children with Autism Spectrum Disorder
Duan P, Dvornek N, Wang J, Eilbott J, Du Y, Sukhodolsky D, Duncan J. Spectral Brain Graph Neural Network for Prediction of Anxiety in Children with Autism Spectrum Disorder. 2024, 00: 1-5. DOI: 10.1109/isbi56570.2024.10635753.Peer-Reviewed Original ResearchGraph neural networksFunctional magnetic resonance imagingAutism spectrum disorderNeural networkCurrent graph neural networksSpectrum disorderMASC-2Spectral analysis algorithmAnalysis algorithmGraph-based networkMultidimensional Anxiety ScaleFast Fourier transformPredictive of anxietyDaily anxiety levelsExtract hidden informationBrain functional networksPower spectrum densityNode featuresNetwork performanceComorbid anxietyBrain mechanismsHidden informationCorrelated featuresAnxiety ScaleTotal scoreTAI-GAN: A Temporally and Anatomically Informed Generative Adversarial Network for early-to-late frame conversion in dynamic cardiac PET inter-frame motion correction
Guo X, Shi L, Chen X, Liu Q, Zhou B, Xie H, Liu Y, Palyo R, Miller E, Sinusas A, Staib L, Spottiswoode B, Liu C, Dvornek N. TAI-GAN: A Temporally and Anatomically Informed Generative Adversarial Network for early-to-late frame conversion in dynamic cardiac PET inter-frame motion correction. Medical Image Analysis 2024, 96: 103190. PMID: 38820677, PMCID: PMC11180595, DOI: 10.1016/j.media.2024.103190.Peer-Reviewed Original ResearchGenerative adversarial networkAdversarial networkMotion estimation accuracyInter-frame motionIntensity-based image registration techniqueAll-to-oneSegmentation masksImage registration techniquesOriginal frameTemporal informationDiagnosis accuracyMyocardial blood flowEstimation accuracyFrame conversionPositron emission tomographyNovel methodImage qualityPET datasetsRegistration techniqueNetworkCardiac positron emission tomographyBlood flowDynamic cardiac positron emission tomographyMotion correctionCoronary artery diseaseSIFT-DBT: Self-Supervised Initialization and Fine-Tuning for Imbalanced Digital Breast Tomosynthesis Image Classification
Du Y, Hooley R, Lewin J, Dvornek N. SIFT-DBT: Self-Supervised Initialization and Fine-Tuning for Imbalanced Digital Breast Tomosynthesis Image Classification. 2011 IEEE International Symposium On Biomedical Imaging: From Nano To Macro 2024, 00: 1-5. PMID: 39263046, PMCID: PMC11386909, DOI: 10.1109/isbi56570.2024.10635723.Peer-Reviewed Original ResearchChapter 13 Data-driven learning strategies for biomarker detection and outcome prediction in Autism from task-based fMRI
Duncan J, Staib L, Dvornek N, Li X, Zhuang J, Wang J, Ventola P. Chapter 13 Data-driven learning strategies for biomarker detection and outcome prediction in Autism from task-based fMRI. 2024, 357-393. DOI: 10.1016/b978-0-32-385124-4.00024-6.Peer-Reviewed Original ResearchLong short-term memoryGraph neural networksFunctional magnetic resonance imagingAutism spectrum disorderNeural ordinary differential equationsData-driven learning strategyDeep learning techniquesTask-based functional magnetic resonance imagingShort-term memoryNeural networkLearning techniquesImpaired social interactionTerm memoryBehavioral therapyRepetitive behaviorsSpectrum disorderDevelopmental disordersLearning strategiesSpatio-temporal characteristicsInherent dynamicsCharacterization of individualsModel of causalitySocial interactionNetworkPersonalized outcome predictions
2023
TAI-GAN: Temporally and Anatomically Informed GAN for Early-to-Late Frame Conversion in Dynamic Cardiac PET Motion Correction
Guo X, Shi L, Chen X, Zhou B, Liu Q, Xie H, Liu Y, Palyo R, Miller E, Sinusas A, Spottiswoode B, Liu C, Dvornek N. TAI-GAN: Temporally and Anatomically Informed GAN for Early-to-Late Frame Conversion in Dynamic Cardiac PET Motion Correction. Lecture Notes In Computer Science 2023, 14288: 64-74. PMID: 38464964, PMCID: PMC10923183, DOI: 10.1007/978-3-031-44689-4_7.Peer-Reviewed Original ResearchLearning Sequential Information in Task-Based fMRI for Synthetic Data Augmentation
Wang J, Dvornek N, Staib L, Duncan J. Learning Sequential Information in Task-Based fMRI for Synthetic Data Augmentation. Lecture Notes In Computer Science 2023, 14312: 79-88. PMID: 39281201, PMCID: PMC11395879, DOI: 10.1007/978-3-031-44858-4_8.Peer-Reviewed Original ResearchFunctional magnetic resonance imagesData augmentationClassification taskSpecific cognitive tasksMedical image analysisSynthetic data augmentationEffective data augmentationDownstream learning tasksCognitive tasksVariational autoencoder modelLearning taskTraining dataAutoencoder modelTemporal informationTraining datasetSequential informationSynthetic imagesTaskFMRI sequencesImage analysisMultiple perspectivesMagnetic resonance imagesImagesDifferent alternativesPersistent issueCopy Number Variation Informs fMRI-Based Prediction of Autism Spectrum Disorder
Dvornek N, Sullivan C, Duncan J, Gupta A. Copy Number Variation Informs fMRI-Based Prediction of Autism Spectrum Disorder. Lecture Notes In Computer Science 2023, 14312: 133-142. PMID: 38371906, PMCID: PMC10868600, DOI: 10.1007/978-3-031-44858-4_13.Peer-Reviewed Original ResearchMCP-Net: Introducing Patlak Loss Optimization to Whole-Body Dynamic PET Inter-Frame Motion Correction
Guo X, Zhou B, Chen X, Chen M, Liu C, Dvornek N. MCP-Net: Introducing Patlak Loss Optimization to Whole-Body Dynamic PET Inter-Frame Motion Correction. IEEE Transactions On Medical Imaging 2023, 42: 3512-3523. PMID: 37368811, PMCID: PMC10751388, DOI: 10.1109/tmi.2023.3290003.Peer-Reviewed Original ResearchMotion estimation blockDeep learning benchmarksGood generalization capabilityMotion correctionMotion correction frameworkMotion prediction errorGeneralization capabilityNetwork performanceNeural networkMotion correction techniqueLearning benchmarksRegistration problemLoss functionEstimation blockLoss optimizationPenalty componentDynamic frameFitting errorSpatial alignmentParametric imagesSpatial misalignmentDynamic positron emission tomographySubject motionPrediction errorCorrection frameworkChapter 13 Deep learning with connectomes
Dvornek N, Li X. Chapter 13 Deep learning with connectomes. 2023, 289-308. DOI: 10.1016/b978-0-323-85280-7.00013-0.ChaptersDeep learning modelsLearning modelDeep learningClassic computer visionNeural network architectureImage analysis problemsMachine learning methodsNeural network modelComputer visionPotential future workNetwork architectureNonlinear neural network modelArt resultsPrediction taskLearning methodsNetwork modelAnalysis problemUseful representationConnectomePopular typeLearningFuture workData analysisArchitectureTask
2022
Inter-Pass Motion Correction for Whole-Body Dynamic PET and Parametric Imaging
Guo X, Wu J, Chen M, Liu Q, Onofrey J, Pucar D, Pang Y, Pigg D, Casey M, Dvornek N, Liu C. Inter-Pass Motion Correction for Whole-Body Dynamic PET and Parametric Imaging. IEEE Transactions On Radiation And Plasma Medical Sciences 2022, 7: 344-353. PMID: 37842204, PMCID: PMC10569406, DOI: 10.1109/trpms.2022.3227576.Peer-Reviewed Original ResearchMCP-Net: Inter-frame Motion Correction with Patlak Regularization for Whole-body Dynamic PET
Guo X, Zhou B, Chen X, Liu C, Dvornek N. MCP-Net: Inter-frame Motion Correction with Patlak Regularization for Whole-body Dynamic PET. Lecture Notes In Computer Science 2022, 13434: 163-172. PMID: 38464686, PMCID: PMC10923180, DOI: 10.1007/978-3-031-16440-8_16.Peer-Reviewed Original ResearchConvolutional long short-term memory (ConvLSTM) layersLong short-term memory layersMotion estimation moduleShort-term memory layersDeep learning benchmarksEnhanced network performanceImage registration problemMotion correction frameworkMotion correctionU-NetNetwork performanceLearning benchmarksSimilarity measurementEstimation moduleRegistration problemGradient lossMemory layerLoss functionDynamic frameDynamic positron emission tomographyFitting errorSpatial alignmentSpatial misalignmentPatient motionModuleCharacterization of Early Stage Parkinson's Disease From Resting-State fMRI Data Using a Long Short-Term Memory Network
Guo X, Tinaz S, Dvornek N. Characterization of Early Stage Parkinson's Disease From Resting-State fMRI Data Using a Long Short-Term Memory Network. Frontiers In Neuroimaging 2022, 1: 952084. PMID: 37555151, PMCID: PMC10406199, DOI: 10.3389/fnimg.2022.952084.Peer-Reviewed Original ResearchEarly-stage Parkinson's diseaseFunctional magnetic resonance imagingParkinson's Progression Markers InitiativeParkinson's diseaseProgression Markers InitiativeDiagnosis of PDEarly-stage diseaseFunctional brain changesBrain function alterationsStage Parkinson's diseaseFunctional connectivity differencesComplex neurodegenerative disorderMagnetic resonance imagingResting-state fMRI dataStage diseaseDisease stageDisease progressionBrain changesTreatment responseMotor impairmentFC changesNew therapiesFunction alterationsResonance imagingBrain regions
2021
Automatic Inter-Frame Patient Motion Correction for Dynamic Cardiac PET Using Deep Learning
Shi L, Lu Y, Dvornek N, Weyman CA, Miller EJ, Sinusas AJ, Liu C. Automatic Inter-Frame Patient Motion Correction for Dynamic Cardiac PET Using Deep Learning. IEEE Transactions On Medical Imaging 2021, 40: 3293-3304. PMID: 34018932, PMCID: PMC8670362, DOI: 10.1109/tmi.2021.3082578.Peer-Reviewed Original ResearchConceptsConvolutional neural networkRegistration-based methodMotion correctionDynamic frameTracer distribution changeDynamic image dataPatient motion correctionPatient scansDeep learningPatient motionMotion estimationImage dataLSTM networkNeural networkRealistic patient motionTemporal informationMotion correction methodMotion detectionCardiac PETClinical workflowRigid translational motionFlow estimationNetworkPatient datasetsSuperior performanceBrainGNN: Interpretable Brain Graph Neural Network for fMRI Analysis
Li X, Zhou Y, Dvornek N, Zhang M, Gao S, Zhuang J, Scheinost D, Staib LH, Ventola P, Duncan JS. BrainGNN: Interpretable Brain Graph Neural Network for fMRI Analysis. Medical Image Analysis 2021, 74: 102233. PMID: 34655865, PMCID: PMC9916535, DOI: 10.1016/j.media.2021.102233.Peer-Reviewed Original ResearchConceptsFunctional magnetic resonance imagesGraph neural network frameworkMedical image analysisGraph neural networkGraph convolutional layersNeural network frameworkDifferent evaluation metricsSpecific task statesIndependent fMRI datasetsPooling layerConvolutional layersConsistency lossNetwork frameworkNeural networkFMRI datasetsImage analysis methodEvaluation metricsDetection resultsBrain graphsSubjects releaseROI selectionImage analysisCognitive stimuliTask statesFMRI analysis