2022
Mitochondrial ATP synthase c-subunit leak channel triggers cell death upon loss of its F1 subcomplex
Mnatsakanyan N, Park HA, Wu J, He X, Llaguno MC, Latta M, Miranda P, Murtishi B, Graham M, Weber J, Levy RJ, Pavlov EV, Jonas EA. Mitochondrial ATP synthase c-subunit leak channel triggers cell death upon loss of its F1 subcomplex. Cell Death & Differentiation 2022, 29: 1874-1887. PMID: 35322203, PMCID: PMC9433415, DOI: 10.1038/s41418-022-00972-7.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphateCell DeathHumansMitochondrial Membrane Transport ProteinsMitochondrial Permeability Transition PoreMitochondrial Proton-Translocating ATPasesProton-Translocating ATPasesConceptsMitochondrial permeability transitionATP synthase c-subunitCell deathMitochondrial ATP synthaseChannel activityCellular energy productionLeak channelsVoltage-gated ion channelsF1 subcomplexATP synthaseC subunitInner membraneProkaryotic hostsCell stressPermeability transitionIon channelsGating mechanismOsmotic changesLarge conductanceC-ringChannels triggersNeuronal deathF1SubcomplexOsmotic gradient
2021
The nucleotide binding affinities of two critical conformations of Escherichia coli ATP synthase
Li Y, Valdez NA, Mnatsakanyan N, Weber J. The nucleotide binding affinities of two critical conformations of Escherichia coli ATP synthase. Archives Of Biochemistry And Biophysics 2021, 707: 108899. PMID: 33991499, PMCID: PMC8278868, DOI: 10.1016/j.abb.2021.108899.Peer-Reviewed Original ResearchMeSH KeywordsCatalytic DomainEscherichia coliModels, MolecularNucleotidesProtein BindingProton-Translocating ATPasesConceptsATP synthaseCritical conformationEscherichia coli ATP synthaseRotary catalytic mechanismCatalytic dwell stateCatalytic mechanismAerobic energy metabolismΓ subunitCysteine mutationsTryptophan fluorescenceDwell stateDisulfide bondsEnergetic functionEnergy metabolismCatalytic siteSynthaseCatalytic dwellAffinity changesATPEnzymeAffinityConformationSubunitsMutationsSites
2020
The new role of F1Fo ATP synthase in mitochondria-mediated neurodegeneration and neuroprotection
Mnatsakanyan N, Jonas EA. The new role of F1Fo ATP synthase in mitochondria-mediated neurodegeneration and neuroprotection. Experimental Neurology 2020, 332: 113400. PMID: 32653453, PMCID: PMC7877222, DOI: 10.1016/j.expneurol.2020.113400.Peer-Reviewed Original ResearchConceptsMitochondrial inner membraneATP synthaseInner membraneOxidative phosphorylationF1Fo-ATP synthaseUnique rotational mechanismMitochondrial inner membrane potentialEfficient cellular metabolismInner membrane potentialMitochondrial permeability transition porePermeability transition poreUnique regulatorAbundant proteinsNew roleCellular metabolismCell lifeProton translocationATP synthesisTransition poreCell survivalElectrochemical gradientCertain pathophysiological conditionsSynthaseATPMembrane potential
2009
ATP Synthase with Its γ Subunit Reduced to the N-terminal Helix Can Still Catalyze ATP Synthesis*
Mnatsakanyan N, Hook JA, Quisenberry L, Weber J. ATP Synthase with Its γ Subunit Reduced to the N-terminal Helix Can Still Catalyze ATP Synthesis*. Journal Of Biological Chemistry 2009, 284: 26519-26525. PMID: 19636076, PMCID: PMC2785340, DOI: 10.1074/jbc.m109.030528.Peer-Reviewed Original Research
2002
F0 Cysteine, bCys21, in the Escherichia coli ATP Synthase Is Involved in Regulation of Potassium Uptake and Molecular Hydrogen Production in Anaerobic Conditions
Mnatsakanyan N, Bagramyan K, Vassilian A, Nakamoto RK, Trchounian A. F0 Cysteine, bCys21, in the Escherichia coli ATP Synthase Is Involved in Regulation of Potassium Uptake and Molecular Hydrogen Production in Anaerobic Conditions. Bioscience Reports 2002, 22: 421-430. PMID: 12516783, DOI: 10.1023/a:1020918125453.Peer-Reviewed Original ResearchConceptsEscherichia coli ATP synthaseATP synthaseMembrane vesiclesMolecular hydrogen productionATP-dependent increaseF0 sectorF1 sectorAnaerobic conditionsCysteine replacementMutant enzymesFermentative conditionsATP hydrolysisSingle cysteineAccessible thiol groupsPotassium uptakeWhole cellsB subunitCysteineVesiclesSynthaseThiol groupsCellsProtoplastsSubunitsUptake