2015
A Dendritic-Cell-Stromal Axis Maintains Immune Responses in Lymph Nodes
Kumar V, Dasoveanu DC, Chyou S, Tzeng TC, Rozo C, Liang Y, Stohl W, Fu YX, Ruddle NH, Lu TT. A Dendritic-Cell-Stromal Axis Maintains Immune Responses in Lymph Nodes. Immunity 2015, 42: 719-730. PMID: 25902483, PMCID: PMC4591553, DOI: 10.1016/j.immuni.2015.03.015.Peer-Reviewed Original ResearchConceptsDendritic cellsImmune responseReticular cellsLymph nodesFunction of DCsOngoing immune responseCell survivalSecondary lymphoid tissuesBeta-receptor ligandsStromal reticular cellsPathogenic lymphocytesLymphoproliferative diseaseLymphocyte functionLymphoid tissueLymphocyte survivalCritical mediatorPodoplaninReceptor ligandsCell functionSurvivalLTβRDiseasePotential strategyCellsResponse
2012
ProxTom Lymphatic Vessel Reporter Mice Reveal Prox1 Expression in the Adrenal Medulla, Megakaryocytes, and Platelets
Truman LA, Bentley KL, Smith EC, Massaro SA, Gonzalez DG, Haberman AM, Hill M, Jones D, Min W, Krause DS, Ruddle NH. ProxTom Lymphatic Vessel Reporter Mice Reveal Prox1 Expression in the Adrenal Medulla, Megakaryocytes, and Platelets. American Journal Of Pathology 2012, 180: 1715-1725. PMID: 22310467, PMCID: PMC3349900, DOI: 10.1016/j.ajpath.2011.12.026.Peer-Reviewed Original ResearchMeSH KeywordsAdrenal MedullaAnimalsBlood PlateletsCells, CulturedCytoplasmEndothelial CellsGene Expression RegulationGenotypeGlycoproteinsHomeodomain ProteinsLuminescent ProteinsLymph NodesLymphatic VesselsMegakaryocytesMembrane Transport ProteinsMiceMice, Inbred C57BLMice, TransgenicMicroscopy, FluorescenceTumor Cells, CulturedTumor Suppressor ProteinsConceptsLymph nodesLymphatic vesselsAdrenal medullaExpression of Prox1Tumor metastasisHigh endothelial venulesProx1 expressionTwo-photon laser scanning microscopyTransplant rejectionDentate gyrusEndothelial venulesAntigen presentationC57BL/6 backgroundTransgenic miceLipid metabolismMiceNeuroendocrine cellsAdult liverNovel siteMetastasisMedullaStudy of diseasesLiving mouseUnknown rolePotential utility
2007
Transgenic LacZ under control of Hec-6st regulatory sequences recapitulates endogenous gene expression on high endothelial venules
Liao S, Bentley K, Lebrun M, Lesslauer W, Ruddle FH, Ruddle NH. Transgenic LacZ under control of Hec-6st regulatory sequences recapitulates endogenous gene expression on high endothelial venules. Proceedings Of The National Academy Of Sciences Of The United States Of America 2007, 104: 4577-4582. PMID: 17360566, PMCID: PMC1838643, DOI: 10.1073/pnas.0700334104.Peer-Reviewed Original ResearchConceptsDNA fragmentsTertiary lymphoid organsExpression of reporterEndogenous gene expressionBAC DNA fragmentsTissue-specific expressionBeta-galactosidase reporter geneHomologous recombination techniquesLymphoid organsLymphoid tissueEffector genesBAC clonesEndogenous genesRegulatory sequencesNasal-associated lymphoid tissueReporter geneGene expressionLacZ constructLTbetaR-Ig treatmentExon IIHEV-like vesselsGenesHigh endothelial venulesMolecular natureRecombination techniques
2005
Lymphotoxin Plays a Crucial Role in the Development and Function of Nasal-Associated Lymphoid Tissue through Regulation of Chemokines and Peripheral Node Addressin
Ying X, Chan K, Shenoy P, Hill M, Ruddle NH. Lymphotoxin Plays a Crucial Role in the Development and Function of Nasal-Associated Lymphoid Tissue through Regulation of Chemokines and Peripheral Node Addressin. American Journal Of Pathology 2005, 166: 135-146. PMID: 15632007, PMCID: PMC1602284, DOI: 10.1016/s0002-9440(10)62239-0.Peer-Reviewed Original ResearchConceptsHigh endothelial venulesLymphoid chemokinesIntranasal immunizationNasal-Associated Lymphoid TissueB cell compartmentalizationB cell zonesCervical lymph nodesSerum IgG titersLower cytokine levelsExpression of lymphotoxinImmediate postnatal periodRole of cytokinesRegulation of chemokinesWild-type miceGlyCAM-1Peripheral node addressinLymphoid tissue developmentNALT developmentSplenic cytokinesVaginal IgACytokine levelsLymph nodesIgG titersVascular addressinsLymphoid tissue
1993
Probing the mechanism of TNF-α(cachectin)- and TNF-β(lymphotoxin)-induced pancreatic inflammation with transgenic mice
Ruddle NH, Picarella D, Kratz A, Li C, Flavell RA. Probing the mechanism of TNF-α(cachectin)- and TNF-β(lymphotoxin)-induced pancreatic inflammation with transgenic mice. Research In Immunology 1993, 144: 336-342. PMID: 8278655, DOI: 10.1016/s0923-2494(93)80077-c.Peer-Reviewed Original Research
1992
Tumor necrosis factor (TNF-α) and lymphotoxin (TNF-β)
Ruddle N. Tumor necrosis factor (TNF-α) and lymphotoxin (TNF-β). Current Opinion In Immunology 1992, 4: 327-332. PMID: 1329840, DOI: 10.1016/0952-7915(92)90084-r.Peer-Reviewed Original Research
1987
Lymphotoxin: Cloning, Regulation and Mechanism of Killing
Ruddle N, Li C, Tang W, Gray P, McGrath K. Lymphotoxin: Cloning, Regulation and Mechanism of Killing. Novartis Foundation Symposia 1987, 131: 64-87. PMID: 3502460, DOI: 10.1002/9780470513521.ch6.Peer-Reviewed Original ResearchConceptsCDNA libraryBamHI fragmentMurine genomic libraryFull-length cDNACOS-1 cellsCell linesT cell linesNorthern blot analysisGenomic libraryMechanism of killingCDNA probeDNA fragmentationChromosome 17T cell receptorRNABlot analysisCDNAGenesCell receptorCell clonesCellsTarget cellsFragmentsMRNA expressionCloning