2011
Numerous isoforms of Fgf8 reflect its multiple roles in the developing brain
Sunmonu N, Li K, Li J. Numerous isoforms of Fgf8 reflect its multiple roles in the developing brain. Journal Of Cellular Physiology 2011, 226: 1722-1726. PMID: 21506104, PMCID: PMC3071877, DOI: 10.1002/jcp.22587.Peer-Reviewed Original ResearchConceptsVertebrate developmentDevelopment of multicellular organismsSplice variantsIsoform proteinsIntegration of cell proliferationRNA alternative splicingMouse Fgf8 geneFibroblast growth factorIn vivo functionMulticellular organismsAlternative splicingFate determinationSoluble growth factorsFgf8 geneN-terminiPolypeptide growth factorsGrowth factorFgf8Ligand-receptor systemSplicingVertebratesCell proliferationFunction of FGF8IsoformsProteinGbx2 and Fgf8 are sequentially required for formation of the midbrain-hindbrain compartment boundary
Sunmonu N, Li K, Guo Q, Li J. Gbx2 and Fgf8 are sequentially required for formation of the midbrain-hindbrain compartment boundary. Development 2011, 138: 725-734. PMID: 21266408, PMCID: PMC3026416, DOI: 10.1242/dev.055665.Peer-Reviewed Original ResearchConceptsMidbrain-hindbrain borderCompartment boundariesCell movementLineage boundariesCell-cell signalingPrevents cell movementsCell sortingGenetic inducible fate mappingExpression borderLineage-restriction boundariesCell surface characteristicsCell-autonomous effectsExpression of Otx2Inducible fate mappingFGF pathwayHomeobox genesGbx2Neural plateHindbrain fateFgf8Transverse bandsLineagesMidbrain progenitorsFate mappingHindbrain progenitors
2009
Fgf8b-containing spliceforms, but not Fgf8a, are essential for Fgf8 function during development of the midbrain and cerebellum
Guo Q, Li K, Sunmonu N, Li J. Fgf8b-containing spliceforms, but not Fgf8a, are essential for Fgf8 function during development of the midbrain and cerebellum. Developmental Biology 2009, 338: 183-192. PMID: 19968985, PMCID: PMC2815264, DOI: 10.1016/j.ydbio.2009.11.034.Peer-Reviewed Original ResearchConceptsGain-of-function studiesMHB regionMutant miceLoss-of-function analysesSplice-site mutationDouble mutant miceLoss of Fgf8In vivo requirementFunction of FGF8Alternative splicingProtein isoformsRegulatory genesActivation of Fgf8Fgf8 geneN-terminiSpliceformsGrowth retardationPostnatal lethalityGenetic backgroundMiceMidbrainFGF17Fgf8aCerebellumPosterior midbrainMisexpression of Gbx2 throughout the mesencephalon by a conditional gain‐of‐function transgene leads to deletion of the midbrain and cerebellum in mice
Sunmonu N, Chen L, Li J. Misexpression of Gbx2 throughout the mesencephalon by a conditional gain‐of‐function transgene leads to deletion of the midbrain and cerebellum in mice. Genesis 2009, 47: 667-673. PMID: 19603509, PMCID: PMC2783588, DOI: 10.1002/dvg.20546.Peer-Reviewed Original ResearchConceptsTransgenic mouse linesMouse homeobox genesMidbrain-hindbrain junctionCre-mediated recombinationPersistent expressionAbsence of CreEmbryonic dayMouse linesMouse embryosAdult brainExpression of Gbx2MiceAnterior shiftHomeobox genesNeural tubeMidbrainFunctional studiesPosterior partCerebellumRhombomere 1Ectopic expressionMesencephalonOtx2Red fluorescent proteinBeta-galactosidase
2006
Electrical impedance myography: Transitioning from human to animal studies
Nie R, Sunmonu N, Chin A, Lee K, Rutkove S. Electrical impedance myography: Transitioning from human to animal studies. Clinical Neurophysiology 2006, 117: 1844-1849. PMID: 16807097, DOI: 10.1016/j.clinph.2006.03.024.Peer-Reviewed Original ResearchConceptsElectrical impedance myographyHamstring musclesRat models of neuromuscular diseasesSciatic nerve crushPrimary outcome variableHealthy adult ratsHuman subjectsAdult ratsNerve crushModels of neuromuscular diseasesRat modelNeurogenic injuryOutcome variablesAnimal studiesRatsImpedance myographyEIM dataPost-injuryRat muscleNeuromuscular diseaseMuscleHamstringRecordsSurface recordingsSubjects