2021
Neuroinvasion of SARS-CoV-2 in human and mouse brain
Song E, Zhang C, Israelow B, Lu-Culligan A, Prado AV, Skriabine S, Lu P, Weizman OE, Liu F, Dai Y, Szigeti-Buck K, Yasumoto Y, Wang G, Castaldi C, Heltke J, Ng E, Wheeler J, Alfajaro MM, Levavasseur E, Fontes B, Ravindra NG, Van Dijk D, Mane S, Gunel M, Ring A, Kazmi SAJ, Zhang K, Wilen CB, Horvath TL, Plu I, Haik S, Thomas JL, Louvi A, Farhadian SF, Huttner A, Seilhean D, Renier N, Bilguvar K, Iwasaki A. Neuroinvasion of SARS-CoV-2 in human and mouse brain. Journal Of Experimental Medicine 2021, 218: e20202135. PMID: 33433624, PMCID: PMC7808299, DOI: 10.1084/jem.20202135.Peer-Reviewed Original ResearchConceptsSARS-CoV-2Central nervous systemSARS-CoV-2 neuroinvasionImmune cell infiltratesCOVID-19 patientsType I interferon responseMultiple organ systemsCOVID-19I interferon responseHuman brain organoidsNeuroinvasive capacityCNS infectionsCell infiltrateNeuronal infectionPathological featuresCortical neuronsRespiratory diseaseDirect infectionCerebrospinal fluidNervous systemMouse brainInterferon responseOrgan systemsHuman ACE2Infection
2018
Biallelic loss of human CTNNA2, encoding αN-catenin, leads to ARP2/3 complex overactivity and disordered cortical neuronal migration
Schaffer AE, Breuss MW, Caglayan AO, Al-Sanaa N, Al-Abdulwahed HY, Kaymakçalan H, Yılmaz C, Zaki MS, Rosti RO, Copeland B, Baek ST, Musaev D, Scott EC, Ben-Omran T, Kariminejad A, Kayserili H, Mojahedi F, Kara M, Cai N, Silhavy JL, Elsharif S, Fenercioglu E, Barshop BA, Kara B, Wang R, Stanley V, James KN, Nachnani R, Kalur A, Megahed H, Incecik F, Danda S, Alanay Y, Faqeih E, Melikishvili G, Mansour L, Miller I, Sukhudyan B, Chelly J, Dobyns WB, Bilguvar K, Jamra RA, Gunel M, Gleeson JG. Biallelic loss of human CTNNA2, encoding αN-catenin, leads to ARP2/3 complex overactivity and disordered cortical neuronal migration. Nature Genetics 2018, 50: 1093-1101. PMID: 30013181, PMCID: PMC6072555, DOI: 10.1038/s41588-018-0166-0.Peer-Reviewed Original ResearchConceptsNeuronal migrationHuman cerebral cortexCortical neuronal migrationΒ-catenin signalingCerebral cortexPotential disease mechanismsDevelopmental brain defectsBiallelic truncating mutationsNeuronal phenotypeBiallelic lossBrain defectsBiallelic mutationsTruncating mutationsDisease mechanismsΒ-cateninPachygyriaRecessive formNeurite stabilityNeuronsFamily membersCTNNA2OveractivityPatients
2013
Mutations in LAMB1 Cause Cobblestone Brain Malformation without Muscular or Ocular Abnormalities
Radmanesh F, Caglayan AO, Silhavy JL, Yilmaz C, Cantagrel V, Omar T, Rosti B, Kaymakcalan H, Gabriel S, Li M, Šestan N, Bilguvar K, Dobyns WB, Zaki MS, Gunel M, Gleeson JG. Mutations in LAMB1 Cause Cobblestone Brain Malformation without Muscular or Ocular Abnormalities. American Journal Of Human Genetics 2013, 92: 468-474. PMID: 23472759, PMCID: PMC3591846, DOI: 10.1016/j.ajhg.2013.02.005.Peer-Reviewed Original ResearchConceptsBrain malformationsCongenital muscular dystrophyOcular abnormalitiesPial surfaceWhite matter signal abnormalitiesNeuronal migration disordersRadial glial cellsPial basement membraneLaminin subunit beta-1Brainstem hypoplasiaFirst cortical layerSignal abnormalitiesCerebellar dysplasiaGlial cellsMigration disordersMuscular abnormalitiesOccipital encephaloceleCortical layersBrain diseasesAbnormalitiesHomozygous deleterious mutationMalformationsBeta 1Muscular dystrophyAffected individuals
2011
Recessive LAMC3 mutations cause malformations of occipital cortical development
Barak T, Kwan KY, Louvi A, Demirbilek V, Saygı S, Tüysüz B, Choi M, Boyacı H, Doerschner K, Zhu Y, Kaymakçalan H, Yılmaz S, Bakırcıoğlu M, Çağlayan A, Öztürk A, Yasuno K, Brunken WJ, Atalar E, Yalçınkaya C, Dinçer A, Bronen RA, Mane S, Özçelik T, Lifton RP, Šestan N, Bilgüvar K, Günel M. Recessive LAMC3 mutations cause malformations of occipital cortical development. Nature Genetics 2011, 43: 590-594. PMID: 21572413, PMCID: PMC3329933, DOI: 10.1038/ng.836.Peer-Reviewed Original ResearchThe Essential Role of Centrosomal NDE1 in Human Cerebral Cortex Neurogenesis
Bakircioglu M, Carvalho OP, Khurshid M, Cox JJ, Tuysuz B, Barak T, Yilmaz S, Caglayan O, Dincer A, Nicholas AK, Quarrell O, Springell K, Karbani G, Malik S, Gannon C, Sheridan E, Crosier M, Lisgo SN, Lindsay S, Bilguvar K, Gergely F, Gunel M, Woods CG. The Essential Role of Centrosomal NDE1 in Human Cerebral Cortex Neurogenesis. American Journal Of Human Genetics 2011, 88: 523-535. PMID: 21529752, PMCID: PMC3146716, DOI: 10.1016/j.ajhg.2011.03.019.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell Cycle ProteinsCentrosomeCerebral CortexChild, PreschoolDNA Mutational AnalysisEpithelial CellsExonsFemaleGenetic LinkageHeLa CellsHomozygoteHumansInfantMaleMiceMicrocephalyMicrotubule-Associated ProteinsMutationNeural Stem CellsNeurogenesisNeuronsPhenotypePregnancyRNA, MessengerTransfectionConceptsCortical laminationPatient-derived cell linesDistinct homozygous mutationsProfound mental retardationCerebral cortexCerebral cortex neurogenesisMouse embryonic brainNeuron productionBrain scansPostmortem dataEmbryonic brainNeural precursorsHomozygous mutationNeuroepithelial cellsNeurogenesisPatient cellsMental retardationExtreme microcephalyAffected individualsEarly neurogenesisCell linesT mutationPakistani originBrainTurkish family
2005
CCM2 Expression Parallels That of CCM1
Seker A, Pricola KL, Guclu B, Ozturk AK, Louvi A, Gunel M. CCM2 Expression Parallels That of CCM1. Stroke 2005, 37: 518-523. PMID: 16373645, DOI: 10.1161/01.str.0000198835.49387.25.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBlotting, WesternBrainCarrier ProteinsCells, CulturedCentral Nervous SystemCerebral CortexChlorocebus aethiopsCOS CellsEndothelium, VascularHumansImmunohistochemistryIn Situ HybridizationKRIT1 ProteinMiceMicrotubule-Associated ProteinsMuscle, SmoothMutationNeuronsPhenotypeProto-Oncogene ProteinsRNA, MessengerSignal TransductionTime FactorsTwo-Hybrid System TechniquesUmbilical VeinsConceptsCerebral cavernous malformationsProtein expressionExtracerebral tissuesFamilial cerebral cavernous malformationsArterial vascular endotheliumPostnatal mouse brainSmooth muscle cellsVascular wall elementsWestern blot analysisExpression patternsPyramidal neuronsVenous circulationCerebral tissueNeurovascular diseasesCavernous malformationsImmunohistochemical analysisVascular endotheliumMouse brainMRNA expressionMuscle cellsFoot processesEpithelial cellsExpression parallelsDisease phenotypeSpatial expression patterns
2004
KRIT1/Cerebral Cavernous Malformation 1 Protein Localizes to Vascular Endothelium, Astrocytes, and Pyramidal Cells of the Adult Human Cerebral Cortex
Guzeloglu-Kayisli O, Amankulor NM, Voorhees J, Luleci G, Lifton RP, Gunel M. KRIT1/Cerebral Cavernous Malformation 1 Protein Localizes to Vascular Endothelium, Astrocytes, and Pyramidal Cells of the Adult Human Cerebral Cortex. Neurosurgery 2004, 54: 943-949. PMID: 15046662, DOI: 10.1227/01.neu.0000114512.59624.a5.Peer-Reviewed Original ResearchMeSH KeywordsAdultAstrocytesBlotting, WesternBrain NeoplasmsCerebral CortexChromosome AberrationsEndothelium, VascularGene Expression Regulation, NeoplasticGenes, DominantHemangioma, CavernousHemangioma, Cavernous, Central Nervous SystemHumansImmunoenzyme TechniquesKRIT1 ProteinMicrotubule-Associated ProteinsProto-Oncogene ProteinsPyramidal CellsConceptsCerebral cavernous malformationsCerebral cortexCavernous malformationsVascular endotheliumCentral nervous system vasculatureAdult human cerebral cortexEndothelial cellsCerebral cavernous malformation lesionsBlood-brain barrierAstrocytic foot processesFamilial cerebral cavernous malformationsHuman cerebral cortexCentral nervous systemAutosomal dominant disorderCerebral angiogenesisPyramidal neuronsPyramidal cellsBlood-organ barriersNervous systemWhite pulpRed pulpIntense stainingWestern blottingFoot processesCardiac myocytes