Featured Publications
Mutations in KATNB1 Cause Complex Cerebral Malformations by Disrupting Asymmetrically Dividing Neural Progenitors
Mishra-Gorur K, Çağlayan AO, Schaffer AE, Chabu C, Henegariu O, Vonhoff F, Akgümüş GT, Nishimura S, Han W, Tu S, Baran B, Gümüş H, Dilber C, Zaki MS, Hossni HA, Rivière JB, Kayserili H, Spencer EG, Rosti RÖ, Schroth J, Per H, Çağlar C, Çağlar Ç, Dölen D, Baranoski JF, Kumandaş S, Minja FJ, Erson-Omay EZ, Mane SM, Lifton RP, Xu T, Keshishian H, Dobyns WB, C. N, Šestan N, Louvi A, Bilgüvar K, Yasuno K, Gleeson JG, Günel M. Mutations in KATNB1 Cause Complex Cerebral Malformations by Disrupting Asymmetrically Dividing Neural Progenitors. Neuron 2014, 84: 1226-1239. PMID: 25521378, PMCID: PMC5024344, DOI: 10.1016/j.neuron.2014.12.014.Peer-Reviewed Original ResearchConceptsComplex cerebral malformationsCerebral cortical malformationsMicrotubule-severing enzyme kataninExome sequencing analysisMitotic spindle formationDrosophila optic lobeCerebral malformationsPatient-derived fibroblastsCell cycle progression delayCortical malformationsMotor neuronsComplex malformationsMicrotubule-associated proteinsCortical developmentReduced cell numberOptic lobeRegulatory subunitBrain developmentCatalytic subunitDeleterious mutationsSpindle formationSupernumerary centrosomesArborization defectsMalformationsHuman phenotypes
2024
CC2D1A causes ciliopathy, intellectual disability, heterotaxy, renal dysplasia, and abnormal CSF flow
Kim A, Sakin I, Viviano S, Tuncel G, Aguilera S, Goles G, Jeffries L, Ji W, Lakhani S, Kose C, Silan F, Oner S, Kaplan O, Group M, Ergoren M, Mishra-Gorur K, Gunel M, Sag S, Temel S, Deniz E. CC2D1A causes ciliopathy, intellectual disability, heterotaxy, renal dysplasia, and abnormal CSF flow. Life Science Alliance 2024, 7: e202402708. PMID: 39168639, PMCID: PMC11339347, DOI: 10.26508/lsa.202402708.Peer-Reviewed Original ResearchConceptsDevelopmental disabilitiesIntellectual disabilityPatient-derived fibroblastsMidbrain regionsBrain developmentDefective ciliogenesisCSF circulationDisabilityCSF flowAbnormal CSF flowNervous system developmentMutant tadpolesCiliated tissuesMultiple model systemsVariant functionPronephric ductUnrelated familiesCC2D1AExpression patternsCiliogenesisRenal dysplasiaLeft-right organizerFunctional analysisDisease mechanismsBrain
2020
Exome sequencing implicates genetic disruption of prenatal neuro-gliogenesis in sporadic congenital hydrocephalus
Jin SC, Dong W, Kundishora AJ, Panchagnula S, Moreno-De-Luca A, Furey CG, Allocco AA, Walker RL, Nelson-Williams C, Smith H, Dunbar A, Conine S, Lu Q, Zeng X, Sierant MC, Knight JR, Sullivan W, Duy PQ, DeSpenza T, Reeves BC, Karimy JK, Marlier A, Castaldi C, Tikhonova IR, Li B, Peña HP, Broach JR, Kabachelor EM, Ssenyonga P, Hehnly C, Ge L, Keren B, Timberlake AT, Goto J, Mangano FT, Johnston JM, Butler WE, Warf BC, Smith ER, Schiff SJ, Limbrick DD, Heuer G, Jackson EM, Iskandar BJ, Mane S, Haider S, Guclu B, Bayri Y, Sahin Y, Duncan CC, Apuzzo MLJ, DiLuna ML, Hoffman EJ, Sestan N, Ment LR, Alper SL, Bilguvar K, Geschwind DH, Günel M, Lifton RP, Kahle KT. Exome sequencing implicates genetic disruption of prenatal neuro-gliogenesis in sporadic congenital hydrocephalus. Nature Medicine 2020, 26: 1754-1765. PMID: 33077954, PMCID: PMC7871900, DOI: 10.1038/s41591-020-1090-2.Peer-Reviewed Original ResearchConceptsCongenital hydrocephalusPoor neurodevelopmental outcomesPost-surgical patientsCerebrospinal fluid accumulationNeural stem cell biologyGenetic disruptionWhole-exome sequencingPrimary pathomechanismEarly brain developmentNeurodevelopmental outcomesHigh morbidityCSF diversionMutation burdenFluid accumulationBrain ventriclesCH casesBrain developmentDe novo mutationsPatientsExome sequencingCSF dynamicsDisease mechanismsHydrocephalusNovo mutationsCell types
2015
Functional Synergy between Cholecystokinin Receptors CCKAR and CCKBR in Mammalian Brain Development
Nishimura S, Bilgüvar K, Ishigame K, Sestan N, Günel M, Louvi A. Functional Synergy between Cholecystokinin Receptors CCKAR and CCKBR in Mammalian Brain Development. PLOS ONE 2015, 10: e0124295. PMID: 25875176, PMCID: PMC4398320, DOI: 10.1371/journal.pone.0124295.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, NewbornBone Morphogenetic Protein 7Cell MovementChemokine CXCL12CholecystokininCorpus CallosumEmbryo, MammalianGene Expression ProfilingGene Expression Regulation, DevelopmentalHomozygoteHumansInterneuronsMiceMice, KnockoutMidline Thalamic NucleiMutationNeocortexNeuropilin-2Receptor, Cholecystokinin AReceptor, Cholecystokinin BReceptors, N-Methyl-D-AspartateSignal TransductionTranscriptomeConceptsCCK receptorsBrain developmentMammalian neocortical developmentCentral nervous systemCortical interneuron migrationHomozygous mutant miceMammalian brain developmentPeripheral organsReceptor lossCorpus callosumCortical developmentPostnatal brainAbundant neuropeptideNervous systemInterneuron migrationMutant miceEmbryonic neocortexNeocortical developmentReceptorsPeptide hormonesG proteinsCholecystokininReciprocal expressionCCKBRBrain
2011
CCM2 expression during prenatal development and adult human neocortex
Tanriover G, Sozen B, Gunel M, Demir N. CCM2 expression during prenatal development and adult human neocortex. International Journal Of Developmental Neuroscience 2011, 29: 509-514. PMID: 21569831, DOI: 10.1016/j.ijdevneu.2011.04.006.Peer-Reviewed Original ResearchConceptsAdult human neocortexCerebral cavernous malformationsHuman neocortexNeuroglial precursor cellsPrenatal developmentMeans of immunohistochemistryCentral nervous systemWestern blot analysisHuman brain developmentVascular malformationsAdult neocortexGlial cellsCavernous malformationsCCM lesionsVascular endotheliumNervous systemVascular channelsBlood vessel formationArterial endotheliumBrain developmentNeocortexExpression patternsEndotheliumPrecursor cellsCCM loci