2020
Feasibility study of PET dynamic imaging of [18F]DHMT for quantification of reactive oxygen species in the myocardium of large animals
Wu J, Boutagy NE, Cai Z, Lin SF, Zheng MQ, Feher A, Stendahl JC, Kapinos M, Gallezot JD, Liu H, Mulnix T, Zhang W, Lindemann M, Teng JK, Miller EJ, Huang Y, Carson RE, Sinusas AJ, Liu C. Feasibility study of PET dynamic imaging of [18F]DHMT for quantification of reactive oxygen species in the myocardium of large animals. Journal Of Nuclear Cardiology 2020, 29: 216-225. PMID: 32415628, PMCID: PMC7666654, DOI: 10.1007/s12350-020-02184-3.Peer-Reviewed Original ResearchSeparating dopamine D2 and D3 receptor sources of [11C]-(+)-PHNO binding potential: Independent component analysis of competitive binding
Smart K, Gallezot JD, Nabulsi N, Labaree D, Zheng MQ, Huang Y, Carson RE, Hillmer AT, Worhunsky PD. Separating dopamine D2 and D3 receptor sources of [11C]-(+)-PHNO binding potential: Independent component analysis of competitive binding. NeuroImage 2020, 214: 116762. PMID: 32201327, PMCID: PMC7263955, DOI: 10.1016/j.neuroimage.2020.116762.Peer-Reviewed Original Research
2019
Kappa-opioid receptors, dynorphin, and cocaine addiction: a positron emission tomography study
Martinez D, Slifstein M, Matuskey D, Nabulsi N, Zheng MQ, Lin SF, Ropchan J, Urban N, Grassetti A, Chang D, Salling M, Foltin R, Carson RE, Huang Y. Kappa-opioid receptors, dynorphin, and cocaine addiction: a positron emission tomography study. Neuropsychopharmacology 2019, 44: 1720-1727. PMID: 31026862, PMCID: PMC6785004, DOI: 10.1038/s41386-019-0398-4.Peer-Reviewed Original ResearchConceptsCocaine use disorderStress-induced relapsePositron emission tomographyCocaine bingeKappa-opioid receptor/dynorphin systemKOR selective agonistPositron emission tomography studyKappa-opioid receptorsCold pressor testCocaine self-administration sessionsEmission tomography studiesSelf-administration sessionsStress-induced cocaineEndogenous dynorphinDynorphin systemHealthy controlsPressor testSelective agonistPET scansAnimal studiesKOR bindingReceptor availabilitySignificant associationBrain regionsEmission tomography
2018
High Single Doses of Radiation May Induce Elevated Levels of Hypoxia in Early-Stage Non-Small Cell Lung Cancer Tumors
Kelada OJ, Decker RH, Nath SK, Johung KL, Zheng MQ, Huang Y, Gallezot JD, Liu C, Carson RE, Oelfke U, Carlson DJ. High Single Doses of Radiation May Induce Elevated Levels of Hypoxia in Early-Stage Non-Small Cell Lung Cancer Tumors. International Journal Of Radiation Oncology • Biology • Physics 2018, 102: 174-183. PMID: 30102194, PMCID: PMC6092043, DOI: 10.1016/j.ijrobp.2018.05.032.Peer-Reviewed Original ResearchConceptsStereotactic body radiation therapyTumor hypoxic volumeHigh single dosesNon-small cell lung cancer (NSCLC) tumorsCell lung cancer tumorsLung cancer tumorsSingle dosesTumor hypoxiaTreatment failureNSCLC tumorsBlood ratioHypoxic volumeRadiation therapyDay 2F-fluoromisonidazole (FMISO) positron emission tomographyCancer tumorsInstitutional review board-approved studyTumor vascular responseBody radiation therapyBoard-approved studyConventional radiation therapyPositron emission tomographyBaseline hypoxiaDetectable hypoxiaNSCLC patients
2017
Quantification of Tumor Hypoxic Fractions Using Positron Emission Tomography with [18F]Fluoromisonidazole ([18F]FMISO) Kinetic Analysis and Invasive Oxygen Measurements
Kelada OJ, Rockwell S, Zheng MQ, Huang Y, Liu Y, Booth CJ, Decker RH, Oelfke U, Carson RE, Carlson DJ. Quantification of Tumor Hypoxic Fractions Using Positron Emission Tomography with [18F]Fluoromisonidazole ([18F]FMISO) Kinetic Analysis and Invasive Oxygen Measurements. Molecular Imaging And Biology 2017, 19: 893-902. PMID: 28409339, PMCID: PMC5640490, DOI: 10.1007/s11307-017-1083-9.Peer-Reviewed Original ResearchConceptsPositron emission tomographyTumor hypoxic fractionHypoxic fractionEmission tomographyLung cancer radiotherapy patientsPO2 measurementsAbsolute tumor volumeC miceDirect pO2 measurementsBlood ratioClinical impactTumor volumeHypoxia quantificationSubcutaneous tumorsPurposeThe purposeTracer kinetic modelingRadiotherapy patientsPET imagingPatientsPO2 valuesScansPatlak modelTomographyTwo-compartmentTBRPET imaging of α7 nicotinic acetylcholine receptors: a comparative study of [18F]ASEM and [18F]DBT-10 in nonhuman primates, and further evaluation of [18F]ASEM in humans
Hillmer AT, Li S, Zheng MQ, Scheunemann M, Lin SF, Nabulsi N, Holden D, Pracitto R, Labaree D, Ropchan J, Teodoro R, Deuther-Conrad W, Esterlis I, Cosgrove KP, Brust P, Carson RE, Huang Y. PET imaging of α7 nicotinic acetylcholine receptors: a comparative study of [18F]ASEM and [18F]DBT-10 in nonhuman primates, and further evaluation of [18F]ASEM in humans. European Journal Of Nuclear Medicine And Molecular Imaging 2017, 44: 1042-1050. PMID: 28120003, PMCID: PMC5400702, DOI: 10.1007/s00259-017-3621-8.Peer-Reviewed Original Research
2016
Imaging of cerebral α4β2* nicotinic acetylcholine receptors with (−)-[18F]Flubatine PET: Implementation of bolus plus constant infusion and sensitivity to acetylcholine in human brain
Hillmer AT, Esterlis I, Gallezot JD, Bois F, Zheng MQ, Nabulsi N, Lin SF, Papke RL, Huang Y, Sabri O, Carson RE, Cosgrove KP. Imaging of cerebral α4β2* nicotinic acetylcholine receptors with (−)-[18F]Flubatine PET: Implementation of bolus plus constant infusion and sensitivity to acetylcholine in human brain. NeuroImage 2016, 141: 71-80. PMID: 27426839, PMCID: PMC5026941, DOI: 10.1016/j.neuroimage.2016.07.026.Peer-Reviewed Original ResearchMeSH KeywordsAcetylcholineAdultBenzamidesBrainBridged Bicyclo Compounds, HeterocyclicComputer SimulationHumansImage Interpretation, Computer-AssistedInfusions, IntraventricularMetabolic Clearance RateMiddle AgedModels, NeurologicalMolecular ImagingNeurotransmitter AgentsPositron-Emission TomographyRadiopharmaceuticalsReceptors, NicotinicReproducibility of ResultsSensitivity and SpecificityTissue DistributionYoung AdultConceptsGray matter regionsIncreased Nanoparticle Delivery to Brain Tumors by Autocatalytic Priming for Improved Treatment and Imaging
Han L, Kong DK, Zheng MQ, Murikinati S, Ma C, Yuan P, Li L, Tian D, Cai Q, Ye C, Holden D, Park JH, Gao X, Thomas JL, Grutzendler J, Carson RE, Huang Y, Piepmeier JM, Zhou J. Increased Nanoparticle Delivery to Brain Tumors by Autocatalytic Priming for Improved Treatment and Imaging. ACS Nano 2016, 10: 4209-4218. PMID: 26967254, PMCID: PMC5257033, DOI: 10.1021/acsnano.5b07573.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntineoplastic AgentsBiological TransportBlood-Brain BarrierBrain NeoplasmsCell Line, TumorDecanoic AcidsDrug Delivery SystemsEthanolaminesFemaleGenetic TherapyHeterograftsHumansMatrix Metalloproteinase 2MiceMice, Inbred C57BLNanoparticlesOptical ImagingPaclitaxelPermeabilityPolymersPurinesPyrazolesScorpion VenomsTranscytosisTumor MicroenvironmentConceptsBlood-brain barrierLow delivery efficiencyTransport of nanoparticlesCancer gene therapyNanoparticle deliveryMore nanoparticlesBrain tumorsNanoparticlesDelivery efficiencyGene therapySystemic deliveryNPsBrain malignanciesBBB modulatorsPharmacological agentsBrain cancerBrain regionsTumorsDeliveryBrainImproved treatmentInadequate amountsPositive feedback loopChemotherapyMalignancy
2015
Receptor Occupancy of the κ-Opioid Antagonist LY2456302 Measured with Positron Emission Tomography and the Novel Radiotracer 11C-LY2795050
Naganawa M, Dickinson GL, Zheng MQ, Henry S, Vandenhende F, Witcher J, Bell R, Nabulsi N, Lin SF, Ropchan J, Neumeister A, Ranganathan M, Tauscher J, Huang Y, Carson RE. Receptor Occupancy of the κ-Opioid Antagonist LY2456302 Measured with Positron Emission Tomography and the Novel Radiotracer 11C-LY2795050. Journal Of Pharmacology And Experimental Therapeutics 2015, 356: 260-266. PMID: 26628406, PMCID: PMC4727157, DOI: 10.1124/jpet.115.229278.Peer-Reviewed Original ResearchConceptsHours postdosePositron emission tomographyReceptor occupancyEmission tomographySerious adverse eventsSingle oral dosesImportant therapeutic roleΚ-opioid receptorsSubstance abuse disordersFurther clinical testingHealthy human subjectsMultilinear analysis-1 (MA1) methodAntagonist radiotracersAdverse eventsOral dosesBrain penetrationTherapeutic rolePlasma concentrationsAbuse disordersEthanol consumptionLY2456302Clinical testingNovel radiotracersAlcohol dependenceDistribution volumeA Promising PET Tracer for Imaging of α7 Nicotinic Acetylcholine Receptors in the Brain: Design, Synthesis, and in Vivo Evaluation of a Dibenzothiophene-Based Radioligand
Teodoro R, Scheunemann M, Deuther-Conrad W, Wenzel B, Fasoli FM, Gotti C, Kranz M, Donat CK, Patt M, Hillmer A, Zheng MQ, Peters D, Steinbach J, Sabri O, Huang Y, Brust P. A Promising PET Tracer for Imaging of α7 Nicotinic Acetylcholine Receptors in the Brain: Design, Synthesis, and in Vivo Evaluation of a Dibenzothiophene-Based Radioligand. Molecules 2015, 20: 18387-18421. PMID: 26473809, PMCID: PMC6332508, DOI: 10.3390/molecules201018387.Peer-Reviewed Original ResearchMeSH KeywordsAlpha7 Nicotinic Acetylcholine ReceptorAnimalsAza CompoundsBrainBrain MappingFluorine RadioisotopesHaplorhiniHumansHydrogen BondingKineticsLigandsOxidesPiperazinesPositron-Emission TomographyProtein BindingRadiopharmaceuticalsRatsReceptors, Serotonin, 5-HT3Structure-Activity RelationshipSwineThiophenesTissue DistributionConceptsStructure-activity relationshipsCationic centerPositron emission tomographyHydrogen bond acceptor functionalitiesNicotinic acetylcholine receptorsAcceptor functionalitiesAcetylcholine receptorsNew ligandsDibenzothiophene dioxideΑ7 nicotinic acetylcholine receptorCompound 7Promising PET tracerNew basic structureRadioligand displacement studiesTwo-tissue compartment modelLigandsEmission tomographyPET radioligandKinetic analysisFurther evaluationDynamic positron emission tomographyPET tracersInitial evaluationVivo evaluationBrainImaging the Cannabinoid CB1 Receptor in Humans with [11C] OMAR: Assessment of Kinetic Analysis Methods, Test–Retest Reproducibility, and Gender Differences
Normandin MD, Zheng MQ, Lin KS, Mason NS, Lin SF, Ropchan J, Labaree D, Henry S, Williams WA, Carson RE, Neumeister A, Huang Y. Imaging the Cannabinoid CB1 Receptor in Humans with [11C] OMAR: Assessment of Kinetic Analysis Methods, Test–Retest Reproducibility, and Gender Differences. Cerebrovascular And Brain Metabolism Reviews 2015, 35: 1313-1322. PMID: 25833345, PMCID: PMC4528005, DOI: 10.1038/jcbfm.2015.46.Peer-Reviewed Original ResearchConceptsTest-retest reliabilityCannabinoid type 1 receptorType 1 receptorCannabinoid CB1 receptorsPositron emission tomography (PET) imagingTest-retest reproducibilityEmission Tomography ImagingGender differencesTwo-tissue compartment modelCerebral uptakePresent studyCB1 receptorsCB1R availabilityInjected doseVascular componentBody weightReceptor availabilityNeuropsychiatric disordersMultilinear analysis methodRegional volumesReceptor bindingTomography imagingParent fractionOne-tissueHuman subjectsSynthesis of [18F]FMISO in a flow-through microfluidic reactor: Development and clinical application
Zheng MQ, Collier L, Bois F, Kelada OJ, Hammond K, Ropchan J, Akula MR, Carlson DJ, Kabalka GW, Huang Y. Synthesis of [18F]FMISO in a flow-through microfluidic reactor: Development and clinical application. Nuclear Medicine And Biology 2015, 42: 578-584. PMID: 25779036, DOI: 10.1016/j.nucmedbio.2015.01.010.Peer-Reviewed Original ResearchTest–Retest Reproducibility of Binding Parameters in Humans with 11C-LY2795050, an Antagonist PET Radiotracer for the κ Opioid Receptor
Naganawa M, Zheng MQ, Henry S, Nabulsi N, Lin SF, Ropchan J, Labaree D, Najafzadeh S, Kapinos M, Tauscher J, Neumeister A, Carson RE, Huang Y. Test–Retest Reproducibility of Binding Parameters in Humans with 11C-LY2795050, an Antagonist PET Radiotracer for the κ Opioid Receptor. Journal Of Nuclear Medicine 2015, 56: 243-248. PMID: 25593119, PMCID: PMC4322754, DOI: 10.2967/jnumed.114.147975.Peer-Reviewed Original ResearchConceptsTest-retest variabilityOpioid receptorsOutcome measuresAbsolute test-retest variabilityMultilinear analysis 1Healthy human subjectsSuitable reference regionTest-retest reproducibilityIntraclass correlation coefficientAntagonist radiotracersHealthy subjectsLY2795050PET scansBrain regionsDistribution volumePET radioligandTest-retest performancePET studiesArterial input functionPET radiotracersHuman subjectsReference regionReceptorsVT valuesKOR
2014
Association of In Vivo κ-Opioid Receptor Availability and the Transdiagnostic Dimensional Expression of Trauma-Related Psychopathology
Pietrzak RH, Naganawa M, Huang Y, Corsi-Travali S, Zheng MQ, Stein MB, Henry S, Lim K, Ropchan J, Lin SF, Carson RE, Neumeister A. Association of In Vivo κ-Opioid Receptor Availability and the Transdiagnostic Dimensional Expression of Trauma-Related Psychopathology. JAMA Psychiatry 2014, 71: 1262-1270. PMID: 25229257, DOI: 10.1001/jamapsychiatry.2014.1221.Peer-Reviewed Original ResearchMeSH KeywordsAdultAmygdalaBenzamidesCarbon RadioisotopesCase-Control StudiesCross-Sectional StudiesDepressionFemaleFunctional NeuroimagingGyrus CinguliHumansHydrocortisoneMaleNeural PathwaysPhobic DisordersPositron-Emission TomographyPsychiatric Status Rating ScalesPyrrolidinesReceptors, Opioid, kappaStress Disorders, Post-TraumaticVentral StriatumWounds and InjuriesYoung AdultConceptsUrinary cortisol levelsLoss symptomsTrauma-related psychopathologyCortisol levelsNeural circuitsDynorphin/κ-opioid receptor systemΚ-opioid receptor systemHamilton Depression Rating ScaleRating ScaleAdrenal axis systemClinician-Administered PTSD ScalePositron emission tomography studyDepression Rating ScaleHamilton Rating ScaleMechanism-based treatmentsEmission tomography studiesAcademic medical centerPositron emission tomographyKOR systemPreclinical dataTrauma-exposed adultsHigh-resolution positron emission tomographyMedical CenterMAIN OUTCOMEDepressive symptomsKinetic Modeling of 11C-LY2795050, A Novel Antagonist Radiotracer for PET Imaging of the Kappa Opioid Receptor in Humans
Naganawa M, Zheng MQ, Nabulsi N, Tomasi G, Henry S, Lin SF, Ropchan J, Labaree D, Tauscher J, Neumeister A, Carson RE, Huang Y. Kinetic Modeling of 11C-LY2795050, A Novel Antagonist Radiotracer for PET Imaging of the Kappa Opioid Receptor in Humans. Cerebrovascular And Brain Metabolism Reviews 2014, 34: 1818-1825. PMID: 25182664, PMCID: PMC4269759, DOI: 10.1038/jcbfm.2014.150.Peer-Reviewed Original ResearchConceptsKappa-opioid receptorsMultilinear analysis 1Opioid receptorsNovel kappa opioid receptorDistribution volumePositron emission tomography (PET) imagingEmission Tomography ImagingLow intersubject variabilityTwo-tissue compartment modelAntagonist radiotracersOral naltrexoneNondisplaceable distribution volumeBaseline scanLY2795050Human studiesArterial input functionPET imagingTomography imagingIntersubject variabilityNaltrexoneEvaluation of [18F]-(-)-norchlorofluorohomoepibatidine ([18F]-(-)-NCFHEB) as a PET radioligand to image the nicotinic acetylcholine receptors in non-human primates
Bois F, Gallezot JD, Zheng MQ, Lin SF, Esterlis I, Cosgrove KP, Carson RE, Huang Y. Evaluation of [18F]-(-)-norchlorofluorohomoepibatidine ([18F]-(-)-NCFHEB) as a PET radioligand to image the nicotinic acetylcholine receptors in non-human primates. Nuclear Medicine And Biology 2014, 42: 570-577. PMID: 25858513, PMCID: PMC4441617, DOI: 10.1016/j.nucmedbio.2014.08.003.Peer-Reviewed Original ResearchConceptsRhesus monkeysGood test-retest reproducibilityML/Plasma free fractionReceptor binding profileNicotinic acetylcholine receptorsTest-retest reproducibilityNon-human primatesReceptor radiotracerΑ4β2 receptorsFrontal cortexPET examinationsMonkey brainAcetylcholine receptorsBrain regionsDistribution volumePET radioligandMultilinear analysis methodPharmacokinetic propertiesEnd of synthesisNon-displaceable distribution volumeFree fractionPET measurementsMonkeysEvaluation of the agonist PET radioligand [11C]GR103545 to image kappa opioid receptor in humans: Kinetic model selection, test–retest reproducibility and receptor occupancy by the antagonist PF-04455242
Naganawa M, Jacobsen LK, Zheng MQ, Lin SF, Banerjee A, Byon W, Weinzimmer D, Tomasi G, Nabulsi N, Grimwood S, Badura LL, Carson RE, McCarthy TJ, Huang Y. Evaluation of the agonist PET radioligand [11C]GR103545 to image kappa opioid receptor in humans: Kinetic model selection, test–retest reproducibility and receptor occupancy by the antagonist PF-04455242. NeuroImage 2014, 99: 69-79. PMID: 24844744, PMCID: PMC4140089, DOI: 10.1016/j.neuroimage.2014.05.033.Peer-Reviewed Original ResearchConceptsKappa-opioid receptorsTest-retest reproducibilityTest-retest variabilityAbsolute test-retest variabilityPF-04455242Time-activity curvesIntra-class coefficientOpioid receptorsRegional time-activity curvesMetabolite-corrected arterial input functionHuman positron emission tomography studiesPositron emission tomography studySelective KOR antagonistEmission tomography studiesReceptor occupancy studiesSuitable reference regionHalf maximal inhibitory concentrationAgonist tracersRegional VTAgonist PET radioligandOral doseKOR antagonistsMaximal inhibitory concentrationOral administrationPreclinical modelsRETRACTED ARTICLE: Cannabinoid Type 1 Receptor Availability in the Amygdala Mediates Threat Processing in Trauma Survivors
Pietrzak RH, Huang Y, Corsi-Travali S, Zheng MQ, Lin SF, Henry S, Potenza MN, Piomelli D, Carson RE, Neumeister A. RETRACTED ARTICLE: Cannabinoid Type 1 Receptor Availability in the Amygdala Mediates Threat Processing in Trauma Survivors. Neuropsychopharmacology 2014, 39: 2519-2528. PMID: 24820537, PMCID: PMC4207337, DOI: 10.1038/npp.2014.110.Peer-Reviewed Original ResearchMeSH KeywordsAdultAmygdalaArachidonic AcidsAttentionCarbon RadioisotopesEndocannabinoidsFearFemaleHumansInterview, PsychologicalMagnetic Resonance ImagingMaleMiddle AgedNeuropsychological TestsPolyunsaturated AlkamidesPositron-Emission TomographyRadiopharmaceuticalsReceptor, Cannabinoid, CB1Young AdultParametric Imaging and Test–Retest Variability of 11C-(+)-PHNO Binding to D2/D3 Dopamine Receptors in Humans on the High-Resolution Research Tomograph PET Scanner
Gallezot JD, Zheng MQ, Lim K, Lin SF, Labaree D, Matuskey D, Huang Y, Ding YS, Carson RE, Malison RT. Parametric Imaging and Test–Retest Variability of 11C-(+)-PHNO Binding to D2/D3 Dopamine Receptors in Humans on the High-Resolution Research Tomograph PET Scanner. Journal Of Nuclear Medicine 2014, 55: 960-966. PMID: 24732151, PMCID: PMC4201637, DOI: 10.2967/jnumed.113.132928.Peer-Reviewed Original ResearchPhosphodiesterase 10A PET Radioligand Development Program: From Pig to Human
Plisson C, Weinzimmer D, Jakobsen S, Natesan S, Salinas C, Lin SF, Labaree D, Zheng MQ, Nabulsi N, Marques TR, Kapur S, Kawanishi E, Saijo T, Gunn RN, Carson RE, Rabiner EA. Phosphodiesterase 10A PET Radioligand Development Program: From Pig to Human. Journal Of Nuclear Medicine 2014, 55: 595-601. PMID: 24614221, DOI: 10.2967/jnumed.113.131409.Peer-Reviewed Original ResearchConceptsMP-10Primate brainRadioligand candidatesBaseline PET studyFirst human administrationTissue kineticsNonhuman primate brainRegional binding potentialSelective PDE10A inhibitorDose-dependent mannerOutcome measuresPreclinical studiesBrain regionsFurther evaluationPET studiesPig brainPET tracersPDE10A inhibitorsBrainVivo studiesReference tissueHuman administrationHuman brainAdministrationGood radiochemical yield