2021
Generation of parametric Ki images for FDG PET using two 5‐min scans
Wu J, Liu H, Ye Q, Gallezot J, Naganawa M, Miao T, Lu Y, Chen M, Esserman DA, Kyriakides TC, Carson RE, Liu C. Generation of parametric Ki images for FDG PET using two 5‐min scans. Medical Physics 2021, 48: 5219-5231. PMID: 34287939, DOI: 10.1002/mp.15113.Peer-Reviewed Original ResearchMeSH KeywordsAlgorithmsFluorodeoxyglucose F18HumansPositron-Emission TomographyRadiopharmaceuticalsWhole Body ImagingConceptsPopulation-based input functionDynamic FDG-PET scansFDG-PET scansFDG-PETSUV changesPET scansClinical practiceSolid lung nodulesClinical usefulnessLate scansBone marrowRegion of interestLung nodulesInput functionScansPatlak analysisKi imagesMin/T-testCorrelation coefficientTumorsSubjectsNodulesDynamic imagingPETGeneration of synthetic PET images of synaptic density and amyloid from 18F‐FDG images using deep learning
Wang R, Liu H, Toyonaga T, Shi L, Wu J, Onofrey JA, Tsai Y, Naganawa M, Ma T, Liu Y, Chen M, Mecca AP, O’Dell R, van Dyck C, Carson RE, Liu C. Generation of synthetic PET images of synaptic density and amyloid from 18F‐FDG images using deep learning. Medical Physics 2021, 48: 5115-5129. PMID: 34224153, PMCID: PMC8455448, DOI: 10.1002/mp.15073.Peer-Reviewed Original ResearchAlzheimer DiseaseAniline CompoundsBrainDeep LearningFluorodeoxyglucose F18HumansPositron-Emission TomographyComparison of [11C]UCB-J and [18F]FDG PET in Alzheimer’s disease: A tracer kinetic modeling study
Chen MK, Mecca AP, Naganawa M, Gallezot JD, Toyonaga T, Mondal J, Finnema SJ, Lin SF, O’Dell R, McDonald JW, Michalak HR, Vander Wyk B, Nabulsi NB, Huang Y, Arnsten AF, van Dyck CH, Carson RE. Comparison of [11C]UCB-J and [18F]FDG PET in Alzheimer’s disease: A tracer kinetic modeling study. Cerebrovascular And Brain Metabolism Reviews 2021, 41: 2395-2409. PMID: 33757318, PMCID: PMC8393289, DOI: 10.1177/0271678x211004312.Peer-Reviewed Original ResearchMeSH KeywordsAgedAged, 80 and overAlzheimer DiseaseFemaleFluorodeoxyglucose F18HumansMaleMiddle AgedPositron-Emission TomographyConceptsSynaptic densityMedial temporal regionsAlzheimer's diseaseNeocortical regionsTemporal regionsRelative outcome measuresMedial temporal lobeVivo PET imagingJ bindingOutcome measuresTemporal lobeMagnitude of reductionCN participantsBrain regionsAD participantsDiseasePET imagingConcordant reductionNormal participantsSynaptic vesiclesPerfusionMetabolismSuitable markerParticipantsSimilar pattern
2020
Reduced synaptic vesicle protein 2A binding in temporal lobe epilepsy: A [11C]UCB‐J positron emission tomography study
Finnema SJ, Toyonaga T, Detyniecki K, Chen M, Dias M, Wang Q, Lin S, Naganawa M, Gallezot J, Lu Y, Nabulsi NB, Huang Y, Spencer DD, Carson RE. Reduced synaptic vesicle protein 2A binding in temporal lobe epilepsy: A [11C]UCB‐J positron emission tomography study. Epilepsia 2020, 61: 2183-2193. PMID: 32944949, DOI: 10.1111/epi.16653.Peer-Reviewed Original ResearchConceptsMedial temporal lobe sclerosisTemporal lobe epilepsyTLE subjectsPositron emission tomographyLobe epilepsyJ BPSynaptic vesicle protein 2APartial volume correctionTemporal lobe sclerosisPositron emission tomography studyEmission tomography studiesSeizure onset zonePromising biomarker approachJ bindingPresurgical selectionSclerotic hippocampusHippocampal asymmetryTLE patientsRegional binding patternsControl subjectsCentrum semiovaleContralateral regionsEpilepsy patientsOutcome measuresOnset zone
2019
Data-driven voluntary body motion detection and non-rigid event-by-event correction for static and dynamic PET
Lu Y, Gallezot JD, Naganawa M, Ren S, Fontaine K, Wu J, Onofrey JA, Toyonaga T, Boutagy N, Mulnix T, Panin VY, Casey ME, Carson RE, Liu C. Data-driven voluntary body motion detection and non-rigid event-by-event correction for static and dynamic PET. Physics In Medicine And Biology 2019, 64: 065002. PMID: 30695768, DOI: 10.1088/1361-6560/ab02c2.Peer-Reviewed Original Research
2018
Improved discrimination between benign and malignant LDCT screening-detected lung nodules with dynamic over static 18F-FDG PET as a function of injected dose
Ye Q, Wu J, Lu Y, Naganawa M, Gallezot JD, Ma T, Liu Y, Tanoue L, Detterbeck F, Blasberg J, Chen MK, Casey M, Carson RE, Liu C. Improved discrimination between benign and malignant LDCT screening-detected lung nodules with dynamic over static 18F-FDG PET as a function of injected dose. Physics In Medicine And Biology 2018, 63: 175015. PMID: 30095083, PMCID: PMC6158045, DOI: 10.1088/1361-6560/aad97f.Peer-Reviewed Original ResearchConceptsPopulation-based input functionStandardized uptake valueImage-derived input functionLung nodulesClinical trialsTime-activity curvesLow-dose computed tomography (LDCT) screeningLung cancer mortality ratesIndeterminate lung nodulesComputed Tomography ScreeningF-FDG PETCancer mortality ratesStatic PET acquisitionVirtual clinical trialsScan durationTomography screeningFDG injectionPET scansMortality rateUptake valueAccurate diagnosisMalignant lung nodulesROC analysisPatient dataMalignant nodules
2006
PET kinetic analysis—compartmental model
Watabe H, Ikoma Y, Kimura Y, Naganawa M, Shidahara M. PET kinetic analysis—compartmental model. Annals Of Nuclear Medicine 2006, 20: 583. PMID: 17294668, DOI: 10.1007/bf02984655.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus Statements
2005
MAP-based kinetic analysis for voxel-by-voxel compartment model estimation: Detailed imaging of the cerebral glucose metabolism using FDG
Kimura Y, Naganawa M, Yamaguchi J, Takabayashi Y, Uchiyama A, Oda K, Ishii K, Ishiwata K. MAP-based kinetic analysis for voxel-by-voxel compartment model estimation: Detailed imaging of the cerebral glucose metabolism using FDG. NeuroImage 2005, 29: 1203-1211. PMID: 16216532, DOI: 10.1016/j.neuroimage.2005.08.046.Peer-Reviewed Original ResearchAlgorithmsBlood GlucoseBrainBrain MappingComputer GraphicsComputer SimulationEnergy MetabolismFluorodeoxyglucose F18HumansImage Processing, Computer-AssistedImaging, Three-DimensionalKineticsLeast-Squares AnalysisNonlinear DynamicsPhantoms, ImagingPositron-Emission TomographyReproducibility of ResultsExtraction of a plasma time-activity curve from dynamic brain PET images based on independent component analysis
Naganawa M, Kimura Y, Ishii K, Oda K, Ishiwata K, Matani A. Extraction of a plasma time-activity curve from dynamic brain PET images based on independent component analysis. IEEE Transactions On Biomedical Engineering 2005, 52: 201-210. PMID: 15709657, DOI: 10.1109/tbme.2004.840193.Peer-Reviewed Original ResearchConceptsBrain PET imagesIndependent component analysisVolume imagesDynamic PET imagesPET imagesDynamic positron emission tomography (PET) dataAppropriate preprocessingBlood volume imagesImagesComponent analysisObjective functionPositron emission tomography dataComputer simulationsBrain FDG-PET studiesTomography dataPlasma time-activity curvePreprocessingNew methodEmission tomography dataSerial arterial blood samplingModelInput functionExtraction