2019
Endothelial TGF-β signalling drives vascular inflammation and atherosclerosis
Chen PY, Qin L, Li G, Wang Z, Dahlman JE, Malagon-Lopez J, Gujja S, Cilfone N, Kauffman K, Sun L, Sun H, Zhang X, Aryal B, Canfran-Duque A, Liu R, Kusters P, Sehgal A, Jiao Y, Anderson D, Gulcher J, Fernandez-Hernando C, Lutgens E, Schwartz M, Pober J, Chittenden T, Tellides G, Simons M. Endothelial TGF-β signalling drives vascular inflammation and atherosclerosis. Nature Metabolism 2019, 1: 912-926. PMID: 31572976, PMCID: PMC6767930, DOI: 10.1038/s42255-019-0102-3.Peer-Reviewed Original ResearchConceptsTGF-β signalingVascular inflammationDisease progressionPlaque growthProgressive vascular diseaseVessel wall inflammationChronic inflammatory responseSpecific therapeutic interventionsAtherosclerotic plaque growthHyperlipidemic micePlaque inflammationWall inflammationProinflammatory effectsVascular diseaseInflammatory responseVascular permeabilityAtherosclerotic plaquesAbnormal shear stressTherapeutic interventionsInflammationEndothelial TGFΒ signalingVessel wallAtherosclerosisLipid retention
2018
SUMOylation of VEGFR2 regulates its intracellular trafficking and pathological angiogenesis
Zhou HJ, Xu Z, Wang Z, Zhang H, Zhuang Z, Simons M, Min W. SUMOylation of VEGFR2 regulates its intracellular trafficking and pathological angiogenesis. Nature Communications 2018, 9: 3303. PMID: 30120232, PMCID: PMC6098000, DOI: 10.1038/s41467-018-05812-2.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCorneaCysteine EndopeptidasesDiabetes MellitusEndopeptidasesGene DeletionGene Knock-In TechniquesGene SilencingGolgi ApparatusHuman Umbilical Vein Endothelial CellsHumansIntracellular SpaceMaleMice, Inbred C57BLMice, KnockoutNeovascularization, PathologicProtein TransportRetinaSignal TransductionSUMO-1 ProteinSumoylationVascular Endothelial Growth Factor AVascular Endothelial Growth Factor Receptor-2ConceptsPathological angiogenesisPotential therapeutic targetRegulation of VEGFR2Non-sumoylated formEndothelial-specific deletionDiabetic miceHindlimb ischemiaTherapeutic targetDiabetic settingControl of angiogenesisEndothelial cellsAngiogenesisVEGFR2Surface expressionVEGFR2 activityTissue repairSENP1
2013
Endothelial Cell–Dependent Regulation of Arteriogenesis
Moraes F, Paye J, Gabhann F, Zhuang ZW, Zhang J, Lanahan AA, Simons M. Endothelial Cell–Dependent Regulation of Arteriogenesis. Circulation Research 2013, 113: 1076-1086. PMID: 23897694, PMCID: PMC3865810, DOI: 10.1161/circresaha.113.301340.Peer-Reviewed Original ResearchConceptsAdult arteriogenesisCell-autonomous fashionGrowth factor signalingMouse linesCell-autonomous effectsKnockin mouse lineMorphogenetic defectsArterial morphogenesisCell type-specific deletionFactor signalingCell typesCre-driver mouse linesSynectinAttractive therapeutic strategyOcclusive atherosclerotic diseaseMuscle cellsEndothelial cellsRegulationArterial conduitsAtherosclerotic diseaseTherapeutic strategiesAdult miceClinical importanceArteriogenesisCells
2000
Basic FGF reduces stunning via a NOS2-dependent pathway in coronary-perfused mouse hearts
Hampton T, Amende I, Fong J, Laubach V, Li J, Metais C, Simons M. Basic FGF reduces stunning via a NOS2-dependent pathway in coronary-perfused mouse hearts. AJP Heart And Circulatory Physiology 2000, 279: h260-h268. PMID: 10899065, DOI: 10.1152/ajpheart.2000.279.1.h260.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCalciumCoronary VesselsEnzyme InhibitorsFemaleFibroblast Growth Factor 2HeartIn Vitro TechniquesLysineMaleMiceMice, Inbred C57BLMice, KnockoutMyocardial IschemiaMyocardial ReperfusionMyocardial StunningNG-Nitroarginine Methyl EsterNitric Oxide SynthaseNitric Oxide Synthase Type IIRecombinant ProteinsConceptsFGF-2Mouse heartsBasic FGFIschemia-reperfusion injuryExpression of NOS2Onset of ischemiaInducible NO synthaseBasic fibroblast growth factorNitric oxide productionNO-selective electrodeFibroblast growth factorLV dysfunctionIschemic contractureVentricular functionLV recoveryNO synthaseIntracellular calciumProtective effectTransgenic heartsOxide productionIschemiaGrowth factorReperfusionSelective inhibitorVehicle control
1997
c‐Myb function in fibroblasts
Bein K, Husain M, Ware J, Mucenski M, Rosenberg R, Simons M. c‐Myb function in fibroblasts. Journal Of Cellular Physiology 1997, 173: 319-326. PMID: 9369944, DOI: 10.1002/(sici)1097-4652(199712)173:3<319::aid-jcp3>3.0.co;2-q.Peer-Reviewed Original ResearchMeSH Keywords3T3 CellsAnimalsCalciumCell CycleCells, CulturedCytoplasmDNA-Binding ProteinsDrosophilaEmbryo, MammalianEmbryo, NonmammalianFibroblastsHeterozygoteHomeodomain ProteinsMiceMice, KnockoutProto-Oncogene ProteinsProto-Oncogene Proteins c-mybRecombinant Fusion ProteinsTrans-ActivatorsTranscription FactorsTranscription, GeneticTransfectionConceptsC-Myb proteinDominant-negative constructMyb DNA binding domainC-MybMYB family membersDNA binding domainsNegative constructsCell cycle regulationSignificant sequence homologyC-myb geneMouse embryonic fibroblastsC-Myb functionCell cycle progressionCell type expressionProtooncogene c-mybNIH 3T3 fibroblastsCell cycle arrestG1 cell cycle arrestNuclear transcription factorA-mybCycle regulationIntracellular calcium levelsB-MybTranscription factorsCDNA sequence