2012
Species-Dependent Posttranscriptional Regulation of NOS1 by FMRP in the Developing Cerebral Cortex
Kwan KY, Lam MM, Johnson MB, Dube U, Shim S, Rašin MR, Sousa AM, Fertuzinhos S, Chen JG, Arellano JI, Chan DW, Pletikos M, Vasung L, Rowitch DH, Huang EJ, Schwartz ML, Willemsen R, Oostra BA, Rakic P, Heffer M, Kostović I, Judaš M, Šestan N. Species-Dependent Posttranscriptional Regulation of NOS1 by FMRP in the Developing Cerebral Cortex. Cell 2012, 149: 899-911. PMID: 22579290, PMCID: PMC3351852, DOI: 10.1016/j.cell.2012.02.060.Peer-Reviewed Original ResearchConceptsNeuronal nitric oxide synthase 1Pyramidal neuronsNOS1 mRNANitric oxide synthase 1Mouse pyramidal neuronsOrofacial motor cortexFMRP-deficient miceFragile X syndromeCerebral cortexMotor cortexCognitive dysfunctionEarly synaptogenesisLoss of functionMonogenic causesNeocortical circuitsLayer 5Human neocortexProtein levelsNeuronsIntellectual disabilityBroca's areaNOS1 proteinCortexSynthase 1FXS casesImpaired motor coordination and disrupted cerebellar architecture in Fgfr1 and Fgfr2 double knockout mice
Smith K, Williamson TL, Schwartz ML, Vaccarino FM. Impaired motor coordination and disrupted cerebellar architecture in Fgfr1 and Fgfr2 double knockout mice. Brain Research 2012, 1460: 12-24. PMID: 22578469, PMCID: PMC3361544, DOI: 10.1016/j.brainres.2012.04.002.Peer-Reviewed Original ResearchConceptsFibroblast growth factor receptorHuman GFAP promoterInner granule cell layerDKO miceGranule cell numberGranule cell progenitorsRadial glial stem cellsMidline glial structuresImpaired motor coordinationCerebellar sizeGranule cell layerDouble knockout miceGlial precursor cellsGlial stem cellsCell numberGranule neuron precursorsGrowth factor receptorGABA interneuronsGranule cell migrationCerebral cortexExternal granular layerMolecular layerMotor coordinationGranule cellsKnockout mice
2007
Deficiency in Inhibitory Cortical Interneurons Associates with Hyperactivity in Fibroblast Growth Factor Receptor 1 Mutant Mice
Smith K, Fagel DM, Stevens HE, Rabenstein RL, Maragnoli ME, Ohkubo Y, Picciotto MR, Schwartz ML, Vaccarino FM. Deficiency in Inhibitory Cortical Interneurons Associates with Hyperactivity in Fibroblast Growth Factor Receptor 1 Mutant Mice. Biological Psychiatry 2007, 63: 953-962. PMID: 17988653, DOI: 10.1016/j.biopsych.2007.09.020.Peer-Reviewed Original ResearchMeSH KeywordsAmphetamineAnimalsBehavior, AnimalBiogenic MonoaminesCell CountCentral Nervous System StimulantsCerebral CortexDisease Models, AnimalDopamine AgentsExploratory BehaviorFibroblast Growth Factor 1Glutamate DecarboxylaseHyperkinesisLocomotionMaleMethylphenidateMiceMice, KnockoutMotor ActivityNerve Tissue ProteinsNeural InhibitionNeuronsSignal TransductionConceptsInhibitory cortical circuitsCortical pyramidal neuronsD2 receptor antagonistGrowth factor receptor 1Spontaneous locomotor hyperactivityFibroblast growth factor receptor 1Factor receptor 1Inhibitory neuronal subtypesLocomotor hyperactivityDopamine agonistsCerebral cortexPyramidal neuronsBasal gangliaMotor hyperactivityReceptor antagonistInhibitory interneuronsTyrosine hydroxylaseCortical circuitsPsychiatric disordersLocomotor responseNeuronal subtypesReceptor 1Mutant miceDopamine transporterSpatial learningAstroglial Cells in Development, Regeneration, and Repair
Vaccarino FM, Fagel DM, Ganat Y, Maragnoli ME, Ment LR, Ohkubo Y, Schwartz ML, Silbereis J, Smith KM. Astroglial Cells in Development, Regeneration, and Repair. The Neuroscientist 2007, 13: 173-185. PMID: 17404377, DOI: 10.1177/1073858406298336.Peer-Reviewed Original Research In PressConceptsFibroblast growth factor receptorAstroglial cellsGenetic fate mappingCell divisionLineage studiesGrowth factor receptorPostnatal CNSEmbryonic CNSMain cellular componentsFate mappingNeuronal differentiationCellular componentsCell typesInjury-induced increaseFactor receptorNeurogenic nichePerinatal injuryCerebral cortexYoung miceCellsOligodendrocytesNeuronsDifferent rolesCNSNiche
2006
Midline radial glia translocation and corpus callosum formation require FGF signaling
Smith KM, Ohkubo Y, Maragnoli ME, Rašin M, Schwartz ML, Šestan N, Vaccarino FM. Midline radial glia translocation and corpus callosum formation require FGF signaling. Nature Neuroscience 2006, 9: 787-797. PMID: 16715082, DOI: 10.1038/nn1705.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAstrocytesCell MovementCell ShapeCerebral CortexCorpus CallosumDown-RegulationFemaleFibroblast Growth Factor 8Fibroblast Growth FactorsGrowth ConesMaleMiceMice, KnockoutMice, TransgenicNeurogliaReceptor, Fibroblast Growth Factor, Type 1Receptor, Fibroblast Growth Factor, Type 2RNA InterferenceSignal TransductionConceptsRadial glial cellsGlial cellsSomal translocationRadial gliaCorpus callosum formationReceptor 1 geneCallosal dysgenesisCerebral cortexFibroblast growth factor receptor 1 (FGFR1) geneIndusium griseumDorsomedial cortexDorsolateral cortexKnockout miceCortexAstrogliaApical endfeetFGFR1 geneAstrocytesGliaAxon guidanceDorsal midlinePrecise targetingCellsUnexpected roleFGF
2004
Chronic neonatal hypoxia leads to long term decreases in the volume and cell number of the rat cerebral cortex
Schwartz ML, Vaccarino F, Chacon M, Yan WL, Ment LR, Stewart WB. Chronic neonatal hypoxia leads to long term decreases in the volume and cell number of the rat cerebral cortex. Seminars In Perinatology 2004, 28: 379-388. PMID: 15693394, DOI: 10.1053/j.semperi.2004.10.009.Peer-Reviewed Original ResearchConceptsDays of hypoxiaPreterm birth resultsNeuronal sizeBirth resultsHypoxic exposureCell numberChronic neonatal hypoxiaChronic sublethal hypoxiaNeonatal rodent modelPerinatal period altersRat cerebral cortexNeuronal cell numberBcl-2Glial cell numbersNormoxic environmentPostnatal day 3Cortical cell numberSignificant neurodevelopmental disabilitiesWestern blot analysisPreterm birthNeonatal hypoxiaNormoxic exposureCerebral cortexChronic hypoxiaControl pups
2002
Chronic hypoxia up-regulates fibroblast growth factor ligands in the perinatal brain and induces fibroblast growth factor-responsive radial glial cells in the sub-ependymal zone
Ganat Y, Soni S, Chacon M, Schwartz ML, Vaccarino FM. Chronic hypoxia up-regulates fibroblast growth factor ligands in the perinatal brain and induces fibroblast growth factor-responsive radial glial cells in the sub-ependymal zone. Neuroscience 2002, 112: 977-991. PMID: 12088755, DOI: 10.1016/s0306-4522(02)00060-x.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBlotting, WesternCerebral CortexCerebral VentriclesEnzyme-Linked Immunosorbent AssayEpendymaFibroblast Growth Factor 1Fibroblast Growth Factor 2HypoxiaImmunohistochemistryNeurogliaRatsReceptor Protein-Tyrosine KinasesReceptor, Fibroblast Growth Factor, Type 1Receptor, Fibroblast Growth Factor, Type 2Receptors, Fibroblast Growth FactorRegenerationUp-RegulationConceptsRadial glial cellsRadial gliaChronic hypoxiaGlial cellsFibroblast growth factor 1Periventricular regionBrain lipid binding proteinMajor receptorChronic hypoxic damageGlial fibrillary acidic proteinHypoxia/ischemiaSub-ventricular zoneImmature glial cellsFibrillary acidic proteinGrowth factor-1Ependymal zoneChronic hypoxemiaCerebral cortexHypoxic damageNeurotrophin familyPerinatal brainFGF receptor 1Rat pupsPostnatal weekGlial phenotypeFibroblast Growth Factor 2 Is Necessary for the Growth of Glutamate Projection Neurons in the Anterior Neocortex
Korada S, Zheng W, Basilico C, Schwartz ML, Vaccarino FM. Fibroblast Growth Factor 2 Is Necessary for the Growth of Glutamate Projection Neurons in the Anterior Neocortex. Journal Of Neuroscience 2002, 22: 863-875. PMID: 11826116, PMCID: PMC6758485, DOI: 10.1523/jneurosci.22-03-00863.2002.Peer-Reviewed Original ResearchConceptsCerebral cortexParietal cortexAnterior cerebral cortexGlutamatergic pyramidal neuronsGABA receptor agonistsGlutamatergic neuronal populationsDuration of sleepAnterior cortical regionsBasic fibroblast growth factorCell numberNull mutant miceGranule cell numberFibroblast growth factor-2Fibroblast growth factorGABA interneuronsGrowth factor 2Fgf2-/- micePyramidal neuronsInhibitory neurotransmissionProjection neuronsAnterior neocortexReceptor agonistPyramidal cellsOccipital cortexNeuronal populations
2000
Basic Fibroblast Growth Factor (Fgf2) Is Necessary for Cell Proliferation and Neurogenesis in the Developing Cerebral Cortex
Raballo R, Rhee J, Lyn-Cook R, Leckman J, Schwartz M, Vaccarino F. Basic Fibroblast Growth Factor (Fgf2) Is Necessary for Cell Proliferation and Neurogenesis in the Developing Cerebral Cortex. Journal Of Neuroscience 2000, 20: 5012-5023. PMID: 10864959, PMCID: PMC6772267, DOI: 10.1523/jneurosci.20-13-05012.2000.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsApoptosisCell DivisionCerebral CortexChoroid PlexusEmbryonic and Fetal DevelopmentFibroblast Growth Factor 2Gene Expression Regulation, DevelopmentalGerm-Line MutationGestational AgeMiceMice, KnockoutProsencephalonReceptor Protein-Tyrosine KinasesReceptor, Fibroblast Growth Factor, Type 1Receptors, Fibroblast Growth FactorTelencephalonConceptsFgf2 knockout micePseudostratified ventricular epitheliumKnockout miceCerebral cortexCortical neuronsFrontal cerebral cortexDeep cortical layersBasic fibroblast growth factorEnd of neurogenesisCortical neuron numberNeuronal progenitor cellsNull mutant miceBasic fibroblast growth factor (bFGF) geneFibroblast growth factorDegree of apoptosisLarge neuronsBasal gangliaCortical layersFgf2 knockoutGrowth factor geneMutant miceVentricular epitheliumGermline mutationsNeuron numberNeurogenesis
1999
Changes in cerebral cortex size are governed by fibroblast growth factor during embryogenesis
Vaccarino F, Schwartz M, Raballo R, Nilsen J, Rhee J, Zhou M, Doetschman T, Coffin J, Wyland J, Hung Y. Changes in cerebral cortex size are governed by fibroblast growth factor during embryogenesis. Nature Neuroscience 1999, 2: 246-253. PMID: 10195217, DOI: 10.1038/6350.Peer-Reviewed Original ResearchConceptsPseudostratified ventricular epitheliumFibroblast growth factor-2Number of gliaAdult cerebral cortexEnd of neurogenesisCerebral cortex sizeFibroblast growth factorGrowth factor 2Cerebral cortexCerebral ventricleSingle microinjectionCortical neuronsBrdU studiesCortical progenitorsVentricular epitheliumCortex sizeGrowth factorRat embryosFGF2 geneEarly neurogenesisFGF receptorsFactor 2GliaNeurogenesisCell cycle length6 Fibroblast Growth Factor Signaling Regulates Growth and Morphogenesis at Multiple Steps during Brain Development11This work represents a collaboration between the laboratories of the first two authors.
Vaccarino F, Schwartz M, Raballo R, Rhee J, Lyn-Cook R. 6 Fibroblast Growth Factor Signaling Regulates Growth and Morphogenesis at Multiple Steps during Brain Development11This work represents a collaboration between the laboratories of the first two authors. Current Topics In Developmental Biology 1999, 46: 179-200. PMID: 10417880, DOI: 10.1016/s0070-2153(08)60329-4.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsCentral nervous system regionsNervous system regionsCentral nervous systemRole of FGF2Growth factor familyCerebral cortexFibroblast growth factor (FGF) familyCortical developmentNervous systemFibroblast growth factor (FGF) signalingGrowth factor signalingSystem regionsFactor signalingMolecular mechanismsCoordinated activationDistinct patternsTarget genesFGF2FGFFactor familyCortex
1995
Basic Fibroblast Growth Factor Increases the Number of Excitatory Neurons Containing Glutamate in the Cerebral Cortex
Vaccarino F, Schwartz M, Hartigan D, Leckman J. Basic Fibroblast Growth Factor Increases the Number of Excitatory Neurons Containing Glutamate in the Cerebral Cortex. Cerebral Cortex 1995, 5: 64-78. PMID: 7719131, DOI: 10.1093/cercor/5.1.64.Peer-Reviewed Original ResearchConceptsBasic fibroblast growth factorNerve growth factorGlutamate-containing neuronsCerebral cortexFibroblast growth factorGrowth factorAspartate-containing neuronsDifferent neurotransmitter phenotypesNumber of GABARatio of glutamateStem cellsNeurotransmitter phenotypeExcitatory neuronsInhibitory neuronsRat telencephalonVentricular zoneBFGF mRNAGABANeuronsCortexGlutamateDiffusible factorsThreefold increaseCellsFactors
1992
Early Expression of GABA-containing Neurons in the Prefrontal and Visual Cortices of Rhesus Monkeys
Schwartz M, Meinecke D. Early Expression of GABA-containing Neurons in the Prefrontal and Visual Cortices of Rhesus Monkeys. Cerebral Cortex 1992, 2: 16-37. PMID: 1633406, DOI: 10.1093/cercor/2.1.16.Peer-Reviewed Original ResearchConceptsSubplate zoneCortical neuronsRhesus monkeysDensity of GABADistribution of GABAPrimary sensory regionsFirst postnatal weekElectron microscopic immunohistochemistryImmunoreactive neuronsCerebral cortexTransmitter phenotypeCortical maturationCortical plateBipolar neuronsSubventricular zonePostnatal weekCerebral wallCortical neurogenesisVisual cortexMature monkeysVentricular zoneGABASynaptic interactionsDay 41Neurons
1990
Development and Plasticity of the Primate Cerebral Cortex
Schwartz M, Goldman-Rakic P. Development and Plasticity of the Primate Cerebral Cortex. Clinics In Perinatology 1990, 17: 83-102. PMID: 2318019, DOI: 10.1016/s0095-5108(18)30591-8.Peer-Reviewed Original ResearchConceptsPrefrontal cortexSensory areasCorticocortical connectivitySensory regionsPrimate cerebral cortexSensory cortical regionsMonkey prefrontal cortexCallosal neuronsCerebral cortexSynaptic contactsPostnatal periodAssociation areasVisual cortexCortical regionsPrenatal periodCortexNonsensory regionsAdultlike patternNonhuman primatesConnectional organizationDendritic surfaceMonthsEarly appearanceEnvironmental stimulationStimulation