2024
Intestinal tuft cell immune privilege enables norovirus persistence
Strine M, Fagerberg E, Darcy P, Barrón G, Filler R, Alfajaro M, D'Angelo-Gavrish N, Wang F, Graziano V, Menasché B, Damo M, Wang Y, Howitt M, Lee S, Joshi N, Mucida D, Wilen C. Intestinal tuft cell immune privilege enables norovirus persistence. Science Immunology 2024, 9: eadi7038. PMID: 38517952, DOI: 10.1126/sciimmunol.adi7038.Peer-Reviewed Original ResearchConceptsCD8<sup>+</sup> T cellsIntestinal tuft cellsT cellsTufted cellsViral persistenceSite of viral persistenceChemosensory epithelial cellsNormal antigen presentationImmune-privileged nicheIntestinal stem cellsMemory phenotypeImmune privilegeImmune escapeReporter miceAntigen presentationChronic infectionCytotoxic capacityEpithelial cellsNorovirus infectionStem cellsCell interactionsInfectionCell survivalEnteric microbesCells
2022
Tuft-cell-intrinsic and -extrinsic mediators of norovirus tropism regulate viral immunity
Strine M, Alfajaro M, Graziano V, Song J, Hsieh L, Hill R, Guo J, VanDussen K, Orchard R, Baldridge M, Lee S, Wilen C. Tuft-cell-intrinsic and -extrinsic mediators of norovirus tropism regulate viral immunity. Cell Reports 2022, 41: 111593. PMID: 36351394, PMCID: PMC9662704, DOI: 10.1016/j.celrep.2022.111593.Peer-Reviewed Original ResearchGenome-wide bidirectional CRISPR screens identify mucins as host factors modulating SARS-CoV-2 infection
Biering SB, Sarnik SA, Wang E, Zengel JR, Leist SR, Schäfer A, Sathyan V, Hawkins P, Okuda K, Tau C, Jangid AR, Duffy CV, Wei J, Gilmore RC, Alfajaro MM, Strine MS, Nguyenla X, Van Dis E, Catamura C, Yamashiro LH, Belk JA, Begeman A, Stark JC, Shon DJ, Fox DM, Ezzatpour S, Huang E, Olegario N, Rustagi A, Volmer AS, Livraghi-Butrico A, Wehri E, Behringer RR, Cheon DJ, Schaletzky J, Aguilar HC, Puschnik AS, Button B, Pinsky BA, Blish CA, Baric RS, O’Neal W, Bertozzi CR, Wilen CB, Boucher RC, Carette JE, Stanley SA, Harris E, Konermann S, Hsu PD. Genome-wide bidirectional CRISPR screens identify mucins as host factors modulating SARS-CoV-2 infection. Nature Genetics 2022, 54: 1078-1089. PMID: 35879412, PMCID: PMC9355872, DOI: 10.1038/s41588-022-01131-x.Peer-Reviewed Original ResearchConceptsSARS-CoV-2 infectionHost factorsSARS-CoV-2 entry factors ACE2SARS-CoV-2-host interactionsSevere acute respiratory syndrome coronavirus 2Acute respiratory syndrome coronavirus 2Respiratory syndrome coronavirus 2Diverse respiratory virusesMild respiratory illnessRespiratory distress syndromeSARS-CoV-2 host factorsHost-directed therapeuticsSyndrome coronavirus 2Coronavirus disease 2019Human lung epithelial cellsRange of symptomsHost defense mechanismsLung epithelial cellsGenome-wide CRISPR knockoutDistress syndromeRespiratory virusesRespiratory illnessCoronavirus 2Cell cycle regulationHigh molecular weight glycoproteinsHigh-affinity, neutralizing antibodies to SARS-CoV-2 can be made without T follicular helper cells
Chen JS, Chow RD, Song E, Mao T, Israelow B, Kamath K, Bozekowski J, Haynes WA, Filler RB, Menasche BL, Wei J, Alfajaro MM, Song W, Peng L, Carter L, Weinstein JS, Gowthaman U, Chen S, Craft J, Shon JC, Iwasaki A, Wilen CB, Eisenbarth SC. High-affinity, neutralizing antibodies to SARS-CoV-2 can be made without T follicular helper cells. Science Immunology 2022, 7: eabl5652. PMID: 34914544, PMCID: PMC8977051, DOI: 10.1126/sciimmunol.abl5652.Peer-Reviewed Original ResearchConceptsSARS-CoV-2 infectionSARS-CoV-2Follicular helper cellsB cell responsesHelper cellsAntibody productionCell responsesSARS-CoV-2 vaccinationB-cell receptor sequencingSevere COVID-19Cell receptor sequencingIndependent antibodiesT cell-B cell interactionsViral inflammationAntiviral antibodiesImmunoglobulin class switchingVirus infectionGerminal centersViral infectionClonal repertoireInfectionAntibodiesClass switchingCOVID-19Patients
2021
Restriction of SARS-CoV-2 replication by targeting programmed −1 ribosomal frameshifting
Sun Y, Abriola L, Niederer RO, Pedersen SF, Alfajaro MM, Silva Monteiro V, Wilen CB, Ho YC, Gilbert WV, Surovtseva YV, Lindenbach BD, Guo JU. Restriction of SARS-CoV-2 replication by targeting programmed −1 ribosomal frameshifting. Proceedings Of The National Academy Of Sciences Of The United States Of America 2021, 118: e2023051118. PMID: 34185680, PMCID: PMC8256030, DOI: 10.1073/pnas.2023051118.Peer-Reviewed Original ResearchConceptsSARS-CoV-2 replicationSARS-CoV-2Severe acute respiratory syndrome coronavirus 2Acute respiratory syndrome coronavirus 2Respiratory syndrome coronavirus 2Syndrome coronavirus 2Vero E6 cellsHigh-throughput compound screenOpen reading frame 1bEffective antiviral strategiesCoronavirus 2E6 cellsAntiviral strategiesViral gene expressionCompound screenFluoroquinolone antibacterialsFrame 1bGene expressionDiscovery and functional interrogation of SARS-CoV-2 RNA-host protein interactions
Flynn RA, Belk JA, Qi Y, Yasumoto Y, Wei J, Alfajaro MM, Shi Q, Mumbach MR, Limaye A, DeWeirdt PC, Schmitz CO, Parker KR, Woo E, Chang HY, Horvath TL, Carette JE, Bertozzi CR, Wilen CB, Satpathy AT. Discovery and functional interrogation of SARS-CoV-2 RNA-host protein interactions. Cell 2021, 184: 2394-2411.e16. PMID: 33743211, PMCID: PMC7951565, DOI: 10.1016/j.cell.2021.03.012.Peer-Reviewed Original ResearchConceptsSARS-CoV-2 RNASARS-CoV-2Virus-induced cell deathHost protein interactionsRNA-binding proteinActive infectionRNA virusesHost-virus interfaceGlobal mortalityTherapeutic benefitCRISPR screensAntiviral factorsProtein interactionsAntiviral activityViral specificityHost pathwaysFunctional RNA-binding proteinsFunctional connectionsRNA-centric approachesCell deathHost proteinsVirusFunctional interrogationRNAComprehensive catalogCD300lf Conditional Knockout Mouse Reveals Strain-Specific Cellular Tropism of Murine Norovirus
Graziano VR, Alfajaro MM, Schmitz CO, Filler RB, Strine MS, Wei J, Hsieh LL, Baldridge MT, Nice TJ, Lee S, Orchard RC, Wilen CB. CD300lf Conditional Knockout Mouse Reveals Strain-Specific Cellular Tropism of Murine Norovirus. Journal Of Virology 2021, 95: 10.1128/jvi.01652-20. PMID: 33177207, PMCID: PMC7925115, DOI: 10.1128/jvi.01652-20.Peer-Reviewed Original ResearchConceptsConditional knockout miceIntestinal epithelial cellsCell tropismKnockout miceTuft cellsDendritic cellsMyelomonocytic cellsB cellsCellular tropismMurine norovirusEpithelial cellsViral RNA levelsInnate immune responseCause of gastroenteritisMNoV infectionCell typesViral loadGastrointestinal infectionsReceptor expressionImmunocompetent humansImmune responseCell type-specific rolesMouse modelIntestinal tissueMNoVNeuroinvasion of SARS-CoV-2 in human and mouse brain
Song E, Zhang C, Israelow B, Lu-Culligan A, Prado AV, Skriabine S, Lu P, Weizman OE, Liu F, Dai Y, Szigeti-Buck K, Yasumoto Y, Wang G, Castaldi C, Heltke J, Ng E, Wheeler J, Alfajaro MM, Levavasseur E, Fontes B, Ravindra NG, Van Dijk D, Mane S, Gunel M, Ring A, Kazmi SAJ, Zhang K, Wilen CB, Horvath TL, Plu I, Haik S, Thomas JL, Louvi A, Farhadian SF, Huttner A, Seilhean D, Renier N, Bilguvar K, Iwasaki A. Neuroinvasion of SARS-CoV-2 in human and mouse brain. Journal Of Experimental Medicine 2021, 218: e20202135. PMID: 33433624, PMCID: PMC7808299, DOI: 10.1084/jem.20202135.Peer-Reviewed Original ResearchConceptsSARS-CoV-2Central nervous systemSARS-CoV-2 neuroinvasionImmune cell infiltratesCOVID-19 patientsType I interferon responseMultiple organ systemsCOVID-19I interferon responseHuman brain organoidsNeuroinvasive capacityCNS infectionsCell infiltrateNeuronal infectionPathological featuresCortical neuronsRespiratory diseaseDirect infectionCerebrospinal fluidNervous systemMouse brainInterferon responseOrgan systemsHuman ACE2Infection
2020
Genome-wide CRISPR Screens Reveal Host Factors Critical for SARS-CoV-2 Infection
Wei J, Alfajaro MM, DeWeirdt PC, Hanna RE, Lu-Culligan WJ, Cai WL, Strine MS, Zhang SM, Graziano VR, Schmitz CO, Chen JS, Mankowski MC, Filler RB, Ravindra NG, Gasque V, de Miguel FJ, Patil A, Chen H, Oguntuyo KY, Abriola L, Surovtseva YV, Orchard RC, Lee B, Lindenbach BD, Politi K, van Dijk D, Kadoch C, Simon MD, Yan Q, Doench JG, Wilen CB. Genome-wide CRISPR Screens Reveal Host Factors Critical for SARS-CoV-2 Infection. Cell 2020, 184: 76-91.e13. PMID: 33147444, PMCID: PMC7574718, DOI: 10.1016/j.cell.2020.10.028.Peer-Reviewed Original ResearchMeSH KeywordsAngiotensin-Converting Enzyme 2AnimalsCell LineChlorocebus aethiopsClustered Regularly Interspaced Short Palindromic RepeatsCoronavirusCoronavirus InfectionsCOVID-19Gene Knockout TechniquesGene Regulatory NetworksGenome-Wide Association StudyHEK293 CellsHMGB1 ProteinHost-Pathogen InteractionsHumansSARS-CoV-2Vero CellsVirus InternalizationConceptsSARS-CoV-2 infectionSARS-CoV-2Vesicular stomatitis virusGenome-wide CRISPR screenSWI/SNF chromatinSARS-CoV-2 host factorsAcute respiratory syndrome coronavirus 2 infectionSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infectionTherapeutic targetHost factorsCoronavirus disease 2019 (COVID-19) pathogenesisSyndrome coronavirus 2 infectionCRISPR screensHost genesGene productsMiddle East respiratory syndrome CoVCoronavirus 2 infectionGenetic hitsHuman cellsSARS-CoV-2 spikeNovel therapeutic targetPotential therapeutic targetVero E6 cellsSARS-CoV-1Small molecule antagonistsMouse model of SARS-CoV-2 reveals inflammatory role of type I interferon signaling
Israelow B, Song E, Mao T, Lu P, Meir A, Liu F, Alfajaro MM, Wei J, Dong H, Homer RJ, Ring A, Wilen CB, Iwasaki A. Mouse model of SARS-CoV-2 reveals inflammatory role of type I interferon signaling. Journal Of Experimental Medicine 2020, 217: e20201241. PMID: 32750141, PMCID: PMC7401025, DOI: 10.1084/jem.20201241.Peer-Reviewed Original ResearchMeSH KeywordsAngiotensin-Converting Enzyme 2AnimalsBetacoronavirusCell Line, TumorCoronavirus InfectionsCOVID-19DependovirusDisease Models, AnimalFemaleHumansInflammationInterferon Type ILungMaleMiceMice, Inbred C57BLMice, TransgenicPandemicsParvoviridae InfectionsPeptidyl-Dipeptidase APneumonia, ViralSARS-CoV-2Signal TransductionVirus ReplicationConceptsSARS-CoV-2Type I interferonMouse modelI interferonRobust SARS-CoV-2 infectionSevere acute respiratory syndrome coronavirus 2Acute respiratory syndrome coronavirus 2SARS-CoV-2 infectionRespiratory syndrome coronavirus 2SARS-CoV-2 replicationCOVID-19 patientsSyndrome coronavirus 2Patient-derived virusesSignificant fatality ratePathological findingsInflammatory rolePathological responseEnzyme 2Receptor angiotensinFatality rateVaccine developmentGenetic backgroundViral replicationCoronavirus diseaseMicePerfusion change in benign prostatic hyperplasia before and after castration in a canine model: Contrast enhanced ultrasonography and CT perfusion study
Yoon S, Alfajaro M, Cho K, Choi U, Je H, Jung J, Jang Y, Choi J. Perfusion change in benign prostatic hyperplasia before and after castration in a canine model: Contrast enhanced ultrasonography and CT perfusion study. Theriogenology 2020, 156: 97-106. PMID: 32682181, DOI: 10.1016/j.theriogenology.2020.06.026.Peer-Reviewed Original ResearchConceptsBenign prostatic hyperplasiaContrast-enhanced ultrasonographyCT perfusionVascular changesArterial inflowProstatic hyperplasiaPerfusion changesBlood volumeNormal prostateDevelopment of BPHMild benign prostatic hyperplasiaDay 60Intraprostatic DHT levelsLevels of dihydrotestosteroneCT perfusion studyIntraprostatic dihydrotestosteroneBlood volume changesEffects of hormonesMajor etiologyProstatic volumeSerum testosteroneVenous outflowDHT levelsNormal dogsVenous parameters
2019
Dual Recognition of Sialic Acid and αGal Epitopes by the VP8* Domains of the Bovine Rotavirus G6P[5] WC3 and of Its Mono-reassortant G4P[5] RotaTeq Vaccine Strains
Alfajaro M, Kim J, Barbé L, Cho E, Park J, Soliman M, Baek Y, Kang M, Kim S, Kim G, Park S, Le Pendu J, Cho K. Dual Recognition of Sialic Acid and αGal Epitopes by the VP8* Domains of the Bovine Rotavirus G6P[5] WC3 and of Its Mono-reassortant G4P[5] RotaTeq Vaccine Strains. Journal Of Virology 2019, 93: 10.1128/jvi.00941-19. PMID: 31243129, PMCID: PMC6714814, DOI: 10.1128/jvi.00941-19.Peer-Reviewed Original ResearchConceptsHisto-blood group antigensRotaTeq vaccineIntestinal epithelial cellsAlternative receptorSialic acidVaccine strainGroup antigensSevere rotavirus diseaseEpithelial cellsHuman intestinal epithelial cellsHuman small intestinal epithelial cellsNatural human infectionBearing strainsSmall intestinal epithelial cellsRotaTeq vaccine strainsMA-104 cellsTight junction proteinsGroup A rotavirusesRotavirus diseaseSevere diarrheaIntestinal enteroidsGroup ASurface sialic acidΑGal epitopesImportant causeEarly Porcine Sapovirus Infection Disrupts Tight Junctions and Uses Occludin as a Coreceptor
Alfajaro M, Cho E, Kim D, Kim J, Park J, Soliman M, Baek Y, Park C, Kang M, Park S, Cho K. Early Porcine Sapovirus Infection Disrupts Tight Junctions and Uses Occludin as a Coreceptor. Journal Of Virology 2019, 93: 10.1128/jvi.01773-18. PMID: 30463963, PMCID: PMC6364031, DOI: 10.1128/jvi.01773-18.Peer-Reviewed Original ResearchConceptsSevere acute gastroenteritisClaudin-1Acute gastroenteritisEntry factorsTight junctionsTJ proteinsLLC-PK cellsAdhesion molecule-1Common causative agentChinese hamster ovaryDisrupts tight junctionsIntestinal epithelial cellsTransepithelial electrical resistanceHisto-blood groupTJ protein occludinRole of TJsMolecule-1Functional coreceptorInfectionTerminal sialic acidAffordable drugsProtein occludinOccludinSpecific antibodiesEpithelial cellsDevelopment of a live attenuated trivalent porcine rotavirus A vaccine against disease caused by recent strains most prevalent in South Korea
Park J, Alfajaro M, Cho E, Kim J, Soliman M, Baek Y, Park C, Lee J, Son K, Cho K, Kang M. Development of a live attenuated trivalent porcine rotavirus A vaccine against disease caused by recent strains most prevalent in South Korea. Veterinary Research 2019, 50: 2. PMID: 30616694, PMCID: PMC6323864, DOI: 10.1186/s13567-018-0619-6.Peer-Reviewed Original ResearchConceptsVaccine strainTrivalent vaccineKorean swine industrySevere economic lossesHomologous virulent strainPorcine rotavirusSwine industryEconomic lossesSerum virus-neutralizing antibodiesExperimental pigletsVirulent strainCell culture passageFecal secretory IgAChallenge exposureVirus-neutralizing antibodiesRecent strainsPigletsVirulentConsecutive passagesRotavirus diseaseIgA levelsRotavirus vaccineOral immunizationHistopathological lesionsVaccine
2018
Phosphatidylinositol 3-Kinase/Akt and MEK/ERK Signaling Pathways Facilitate Sapovirus Trafficking and Late Endosomal Acidification for Viral Uncoating in LLC-PK Cells
Soliman M, Kim D, Park J, Kim J, Alfajaro M, Baek Y, Cho E, Park C, Kang M, Park S, Cho K. Phosphatidylinositol 3-Kinase/Akt and MEK/ERK Signaling Pathways Facilitate Sapovirus Trafficking and Late Endosomal Acidification for Viral Uncoating in LLC-PK Cells. Journal Of Virology 2018, 92: 10.1128/jvi.01674-18. PMID: 30282712, PMCID: PMC6258943, DOI: 10.1128/jvi.01674-18.Peer-Reviewed Original ResearchConceptsMEK/ERKCell surface carbohydrate receptorsLate endosomesPI3K/AktSmall interfering RNAsEndosomal acidificationPI3KEarly endosomesExtracellular signal-regulated kinaseViral uncoatingSignal-regulated kinaseV-ATPase proton pumpCell surface receptorsHost cell entryEarly activationEntry processERK moleculesInterfering RNAsEndosomesCarbohydrate receptorsUse of inhibitorsProton pumpERKSurface receptorsAktPorcine sapovirus Cowden strain enters LLC-PK cells via clathrin- and cholesterol-dependent endocytosis with the requirement of dynamin II
Soliman M, Kim D, Kim C, Seo J, Kim J, Park J, Alfajaro M, Baek Y, Cho E, Park S, Kang M, Chang K, Goodfellow I, Cho K. Porcine sapovirus Cowden strain enters LLC-PK cells via clathrin- and cholesterol-dependent endocytosis with the requirement of dynamin II. Veterinary Research 2018, 49: 92. PMID: 30223898, PMCID: PMC6142377, DOI: 10.1186/s13567-018-0584-0.Peer-Reviewed Original ResearchConceptsDynamin IIActin rearrangementLate endosomesDN mutantsLLC-PK cellsDynamin GTPase activityClathrin-mediated endocytosisCowden strainClathrin-mediated internalizationDominant negative mutantCholesterol-dependent endocytosisInhibition of caveolaeVesicle internalizationCholesterol-sequestering drugEndosomal traffickingEarly endosomesSiRNA depletionNegative mutantGTPase activityClathrinEndocytosisEndosomal acidificationMutantsEndosomesCell entryRotavirus-Induced Early Activation of the RhoA/ROCK/MLC Signaling Pathway Mediates the Disruption of Tight Junctions in Polarized MDCK Cells
Soliman M, Cho E, Park J, Kim J, Alfajaro M, Baek Y, Kim D, Kang M, Park S, Cho K. Rotavirus-Induced Early Activation of the RhoA/ROCK/MLC Signaling Pathway Mediates the Disruption of Tight Junctions in Polarized MDCK Cells. Scientific Reports 2018, 8: 13931. PMID: 30224682, PMCID: PMC6141481, DOI: 10.1038/s41598-018-32352-y.Peer-Reviewed Original ResearchConceptsTJ protein distributionTJ integrityTJ proteinsTight junctionsIntestinal epithelial tight junctionsEarly disruptionMDCK cellsEpithelial tight junctionsPrecise molecular mechanismsBovine NCDVRotavirus strainsEarly activationParacellular permeabilityCellular receptorsPerijunctional actomyosin ringTransepithelial resistanceEntry portalReversible decreaseSignaling pathwaysInfectionCoreceptorHarmful factorsMolecular mechanismsPresent studyCellsFeline calicivirus- and murine norovirus-induced COX-2/PGE2 signaling pathway has proviral effects
Alfajaro M, Cho E, Park J, Kim J, Soliman M, Baek Y, Kang M, Park S, Cho K. Feline calicivirus- and murine norovirus-induced COX-2/PGE2 signaling pathway has proviral effects. PLOS ONE 2018, 13: e0200726. PMID: 30021004, PMCID: PMC6051663, DOI: 10.1371/journal.pone.0200726.Peer-Reviewed Original ResearchConceptsCOX-2/COX-1/Production of PGE2COX-2 enzymePharmacological inhibitorsProviral effectCOX-1COX-2/PGE2Potential therapeutic candidateAddition of PGE2Small interfering RNAsSame virus familyReplication of virusesInfection of cellsTime-dependent mannerAntiviral effectMNV infectionTherapeutic candidatePGE2Virus replicationMNV replicationPathophysiological conditionsInhibitory effectGenus SapovirusInfectionBovine Nebovirus Interacts with a Wide Spectrum of Histo-Blood Group Antigens
Cho E, Soliman M, Alfajaro M, Kim J, Seo J, Park J, Kim D, Baek Y, Kang M, Park S, Le Pendu J, Cho K. Bovine Nebovirus Interacts with a Wide Spectrum of Histo-Blood Group Antigens. Journal Of Virology 2018, 92: 10.1128/jvi.02160-17. PMID: 29467317, PMCID: PMC5899197, DOI: 10.1128/jvi.02160-17.Peer-Reviewed Original ResearchConceptsFucose epitopesTerminal sialic acidHost speciesVirus-like particlesHisto-blood group antigensCell surface carbohydrate moietiesMammalian host speciesEnteric calicivirusesAttachment factorsSialic acidCultured cell linesBovine digestive tractSurface carbohydrate moietiesCell carbohydratesHost rangeType speciesViral generaHBGA recognitionCarbohydrate moietyBiochemical assaysSpecific enzymesCellular receptorsSynthetic histo-blood group antigensReplication cycleSpeciesActivation of PI3K, Akt, and ERK during early rotavirus infection leads to V-ATPase-dependent endosomal acidification required for uncoating
Soliman M, Seo J, Kim D, Kim J, Park J, Alfajaro M, Baek Y, Cho E, Kwon J, Choi J, Kang M, Park S, Cho K. Activation of PI3K, Akt, and ERK during early rotavirus infection leads to V-ATPase-dependent endosomal acidification required for uncoating. PLOS Pathogens 2018, 14: e1006820. PMID: 29352319, PMCID: PMC5792019, DOI: 10.1371/journal.ppat.1006820.Peer-Reviewed Original ResearchMeSH KeywordsAcidsAnimalsCaco-2 CellsCapsid ProteinsCattleCells, CulturedEndosomesEnzyme ActivationExtracellular Signal-Regulated MAP KinasesHaplorhiniHumansHydrogen-Ion ConcentrationPhosphatidylinositol 3-KinasesProto-Oncogene Proteins c-aktRotavirusRotavirus InfectionsSf9 CellsSignal TransductionVacuolar Proton-Translocating ATPasesVirus UncoatingConceptsMEK/ERK pathwayV-ATPasePI3K/AktSubunit EOuter capsid proteinEndosomal acidificationLate endosomesERK pathwayCapsid proteinPI3KEarly infection eventsMEK/ERKCell surface receptorsImmunoprecipitation assaysPPI3KVirus traffickingProximity ligationMultistep bindingSurface receptorsAktViral progenyViral uncoatingERKRVA strainsEndosomes