2021
MEKK3–TGFβ crosstalk regulates inward arterial remodeling
Deng H, Xu Y, Hu X, Zhuang ZW, Chang Y, Wang Y, Ntokou A, Schwartz MA, Su B, Simons M. MEKK3–TGFβ crosstalk regulates inward arterial remodeling. Proceedings Of The National Academy Of Sciences Of The United States Of America 2021, 118: e2112625118. PMID: 34911761, PMCID: PMC8713777, DOI: 10.1073/pnas.2112625118.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsGene DeletionGene Expression RegulationGenotypeHindlimbHuman Umbilical Vein Endothelial CellsHumansHypertension, PulmonaryIschemiaMAP Kinase Kinase Kinase 1MAP Kinase Kinase Kinase 3MiceReceptors, Transforming Growth Factor betaSelective Estrogen Receptor ModulatorsSignal TransductionTamoxifenTransforming Growth Factor betaVascular RemodelingConceptsArterial remodelingSuch common diseasesEndothelial-specific deletionActivation of TGFβArtery diseaseHyperlipidemic miceSpontaneous hypertensionInward remodelingAccelerated progressionArterial diameterVascular remodelingPathogenic importanceAdult miceKnockout miceVascular circuitPathologic conditionsCommon diseaseMAPK ERK1/2MiceRemodelingHypertensionAtherosclerosisControl of proliferationDiseaseProgressionActivation of Smad2/3 signaling by low fluid shear stress mediates artery inward remodeling
Deng H, Min E, Baeyens N, Coon BG, Hu R, Zhuang ZW, Chen M, Huang B, Afolabi T, Zarkada G, Acheampong A, McEntee K, Eichmann A, Liu F, Su B, Simons M, Schwartz MA. Activation of Smad2/3 signaling by low fluid shear stress mediates artery inward remodeling. Proceedings Of The National Academy Of Sciences Of The United States Of America 2021, 118: e2105339118. PMID: 34504019, PMCID: PMC8449390, DOI: 10.1073/pnas.2105339118.Peer-Reviewed Original ResearchConceptsLow fluid shear stressFluid shear stressNuclear translocationSmad linker regionTransmembrane protein Neuropilin-1Target gene expressionCyclin-dependent kinasesBone morphogenetic proteinEC-specific deletionSmad2/3 nuclear translocationNuclear localizationHigh fluid shear stressLinker regionMorphogenetic proteinsGene expressionRegulatory mechanismsActivation of Smad2/3Receptor ALK5Smad2/3 phosphorylationTranslocationCell sensingEndothelial cell (EC) sensingPhosphorylationALK5Smad2/3
2019
Endothelial TGF-β signalling drives vascular inflammation and atherosclerosis
Chen PY, Qin L, Li G, Wang Z, Dahlman JE, Malagon-Lopez J, Gujja S, Cilfone N, Kauffman K, Sun L, Sun H, Zhang X, Aryal B, Canfran-Duque A, Liu R, Kusters P, Sehgal A, Jiao Y, Anderson D, Gulcher J, Fernandez-Hernando C, Lutgens E, Schwartz M, Pober J, Chittenden T, Tellides G, Simons M. Endothelial TGF-β signalling drives vascular inflammation and atherosclerosis. Nature Metabolism 2019, 1: 912-926. PMID: 31572976, PMCID: PMC6767930, DOI: 10.1038/s42255-019-0102-3.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAtherosclerosisCapillary PermeabilityCell LineDisease ProgressionEndothelium, VascularHumansMiceMice, KnockoutSignal TransductionTransforming Growth Factor betaVasculitisConceptsTGF-β signalingVascular inflammationDisease progressionPlaque growthProgressive vascular diseaseVessel wall inflammationChronic inflammatory responseSpecific therapeutic interventionsAtherosclerotic plaque growthHyperlipidemic micePlaque inflammationWall inflammationProinflammatory effectsVascular diseaseInflammatory responseVascular permeabilityAtherosclerotic plaquesAbnormal shear stressTherapeutic interventionsInflammationEndothelial TGFΒ signalingVessel wallAtherosclerosisLipid retention
2015
KLF4 is a key determinant in the development and progression of cerebral cavernous malformations
Cuttano R, Rudini N, Bravi L, Corada M, Giampietro C, Papa E, Morini MF, Maddaluno L, Baeyens N, Adams RH, Jain MK, Owens GK, Schwartz M, Lampugnani MG, Dejana E. KLF4 is a key determinant in the development and progression of cerebral cavernous malformations. EMBO Molecular Medicine 2015, 8: 6-24. PMID: 26612856, PMCID: PMC4718159, DOI: 10.15252/emmm.201505433.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBone Morphogenetic Protein 6Cell ProliferationDisease Models, AnimalDisease ProgressionEndothelial CellsHEK293 CellsHemangioma, Cavernous, Central Nervous SystemHumansKRIT1 ProteinKruppel-Like Factor 4Kruppel-Like Transcription FactorsMiceMice, Inbred C57BLMice, KnockoutMicrotubule-Associated ProteinsMitogen-Activated Protein Kinase 7MutationProto-Oncogene ProteinsRNA InterferenceSignal TransductionSmad1 ProteinTransforming Growth Factor betaConceptsKruppel-like factor 4Cerebral cavernous malformationsEndothelial cellsCavernous malformationsFamilial cerebral cavernous malformationsCentral nervous systemDouble knockout miceGrowth factor-beta/bone morphogenetic protein signalingCerebral hemorrhageMouse mortalityPharmacological treatmentCurrent therapiesVascular malformationsKnockout miceTherapeutic targetNervous systemMesenchymal transitionKLF4 transcriptional activityMalformationsCCM3 genesFactor 4Function mutationsEndMTMorphogenetic protein signalingBone morphogenetic protein (BMP) signalingEndothelial-to-mesenchymal transition drives atherosclerosis progression
Chen PY, Qin L, Baeyens N, Li G, Afolabi T, Budatha M, Tellides G, Schwartz MA, Simons M. Endothelial-to-mesenchymal transition drives atherosclerosis progression. Journal Of Clinical Investigation 2015, 125: 4514-4528. PMID: 26517696, PMCID: PMC4665771, DOI: 10.1172/jci82719.Peer-Reviewed Original ResearchConceptsProgression of atherosclerosisTGF-β signalingFGF receptor 1Left main coronary arteryMesenchymal transitionFGFR1 expressionDevelopment of EndMTMain coronary arteryTotal plaque burdenHigh-fat dietCultured human endothelial cellsDouble knockout miceEndothelial-specific deletionEarly time pointsCoronary atherosclerosisCoronary diseaseHuman endothelial cellsAtherosclerosis progressionPlaque burdenAtherosclerotic miceCoronary arteryInflammatory cytokinesAtherosclerotic lesionsNeointima formationClinical relevance