2020
Partially Differentiated Neuroretinal Cells Promote Maturation of the Retinal Pigment Epithelium
Singh D, Chen X, Xia T, Ghiassi-Nejad M, Tainsh L, Adelman RA, Rizzolo LJ. Partially Differentiated Neuroretinal Cells Promote Maturation of the Retinal Pigment Epithelium. Investigative Ophthalmology & Visual Science 2020, 61: 9-9. PMID: 33151282, PMCID: PMC7671856, DOI: 10.1167/iovs.61.13.9.Peer-Reviewed Original ResearchConceptsRetinal pigment epitheliumRetinal progenitor cellsTransepithelial electrical resistanceNeurosensory retinaPigment epitheliumHuman fetal retinal pigment epitheliumRecoverin-positive cellsFetal retinal pigment epitheliumGanglion cell layerAbility of RPERPE signature genesRed/green opsinTranswell filter insertsStem cellsQuantitative RT-PCRGlial markersHuman stem cellsExpression of rhodopsinInterneuron markersBipolar cellsRetinal culturesRetinaRT-PCRProgenitor cellsPresumptive photoreceptorsClaudins regulate gene and protein expression of the retinal pigment epithelium independent of their association with tight junctions
Liu F, Xu T, Peng S, Adelman RA, Rizzolo LJ. Claudins regulate gene and protein expression of the retinal pigment epithelium independent of their association with tight junctions. Experimental Eye Research 2020, 198: 108157. PMID: 32712183, DOI: 10.1016/j.exer.2020.108157.Peer-Reviewed Original Research
2016
Claudin-3 and claudin-19 partially restore native phenotype to ARPE-19 cells via effects on tight junctions and gene expression
Peng S, Wang SB, Singh D, Zhao PY, Davis K, Chen B, Adelman RA, Rizzolo LJ. Claudin-3 and claudin-19 partially restore native phenotype to ARPE-19 cells via effects on tight junctions and gene expression. Experimental Eye Research 2016, 151: 179-189. PMID: 27593915, DOI: 10.1016/j.exer.2016.08.021.Peer-Reviewed Original Research
2013
Engineering a Blood-Retinal Barrier With Human Embryonic Stem Cell-Derived Retinal Pigment Epithelium: Transcriptome and Functional Analysis
Peng S, Gan G, Qiu C, Zhong M, An H, Adelman RA, Rizzolo LJ. Engineering a Blood-Retinal Barrier With Human Embryonic Stem Cell-Derived Retinal Pigment Epithelium: Transcriptome and Functional Analysis. Stem Cells Translational Medicine 2013, 2: 534-544. PMID: 23734062, PMCID: PMC3697821, DOI: 10.5966/sctm.2012-0134.Peer-Reviewed Original ResearchConceptsRetinal pigment epitheliumBlood-retinal barrierHuman retinal pigment epitheliumPigment epitheliumHuman fetal retinal pigment epitheliumOuter blood-retinal barrierTight junctionsFetal retinal pigment epitheliumEmbryonic stem cell-derived retinal pigment epitheliumAdult retinal pigment epitheliumQuantitative reverse transcription polymerase chain reactionMaturation of hESCReverse transcription-polymerase chain reactionTranscription-polymerase chain reactionHuman embryonic stem cell-derived retinal pigment epitheliumStem cell-derived retinal pigment epitheliumRPE replacement therapyPanel of genesReplacement therapyAnimal modelsHuman embryonic stem cellsRetinal degenerationRPE functionSerum-free mediumHuman retina
2011
Differential Expression of Claudins in Retinas during Normal Development and the Angiogenesis of Oxygen-Induced Retinopathy
Luo Y, Xiao W, Zhu X, Mao Y, Liu X, Chen X, Huang J, Tang S, Rizzolo LJ. Differential Expression of Claudins in Retinas during Normal Development and the Angiogenesis of Oxygen-Induced Retinopathy. Investigative Ophthalmology & Visual Science 2011, 52: 7556-7564. PMID: 21862644, DOI: 10.1167/iovs.11-7185.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, NewbornBlood-Retinal BarrierClaudinsDisease Models, AnimalFluorescent Antibody Technique, IndirectGene Expression Regulation, DevelopmentalHumansInfant, NewbornMembrane ProteinsMiceMice, Inbred C57BLNeovascularization, PhysiologicOccludinOxygenPlant LectinsReal-Time Polymerase Chain ReactionRetinaRetinal NeovascularizationRetinal VesselsRetinopathy of PrematurityRNA, MessengerClaudin-19 and the Barrier Properties of the Human Retinal Pigment Epithelium
Peng S, Rao VS, Adelman RA, Rizzolo LJ. Claudin-19 and the Barrier Properties of the Human Retinal Pigment Epithelium. Investigative Ophthalmology & Visual Science 2011, 52: 1392-1403. PMID: 21071746, PMCID: PMC3101667, DOI: 10.1167/iovs.10-5984.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsMeSH KeywordsCells, CulturedClaudinsElectric ImpedanceFluorescent Antibody Technique, IndirectGene SilencingGestational AgeHumansImmunoblottingMembrane ProteinsOccludinPermeabilityPolyethylene GlycolsRetinal Pigment EpitheliumReverse Transcriptase Polymerase Chain ReactionRNA, MessengerRNA, Small InterferingTight JunctionsConceptsRetinal pigment epitheliumTransepithelial electrical resistanceHuman retinal pigment epitheliumHuman fetal RPECultured human fetal retinal pigment epitheliumPigment epitheliumClaudin-19Retinal sideHuman fetal retinal pigment epitheliumSpread of edemaFetal retinal pigment epitheliumFetal human retinal pigment epitheliumEffect of serumTight junctionsRPE permeabilityQuantitative RT-PCRChoroidal capillariesSubpopulation of cellsClaudin-1RPE barrierClaudin-3RPE tight junctionsRT-PCREpitheliumSerum
2009
Minimal Effects of VEGF and Anti-VEGF Drugs on the Permeability or Selectivity of RPE Tight Junctions
Peng S, Adelman RA, Rizzolo LJ. Minimal Effects of VEGF and Anti-VEGF Drugs on the Permeability or Selectivity of RPE Tight Junctions. Investigative Ophthalmology & Visual Science 2009, 51: 3216-3225. PMID: 20042644, PMCID: PMC2891474, DOI: 10.1167/iovs.09-4162.Peer-Reviewed Original ResearchAngiogenesis InhibitorsAntibodies, MonoclonalAntibodies, Monoclonal, HumanizedBevacizumabBlood-Retinal BarrierCapillary PermeabilityCells, CulturedClaudinsElectric ImpedanceEnzyme-Linked Immunosorbent AssayFluorescent Antibody Technique, IndirectGene ExpressionHumansImmunoblottingPolyethylene GlycolsPotassiumRanibizumabRetinal Pigment EpitheliumReverse Transcriptase Polymerase Chain ReactionRNA, MessengerSodiumTight JunctionsVascular Endothelial Growth Factor A
2008
Diffusible retinal secretions regulate the expression of tight junctions and other diverse functions of the retinal pigment epithelium.
Sun R, Peng S, Chen X, Zhang H, Rizzolo LJ. Diffusible retinal secretions regulate the expression of tight junctions and other diverse functions of the retinal pigment epithelium. Molecular Vision 2008, 14: 2237-62. PMID: 19057659, PMCID: PMC2593753.Peer-Reviewed Original ResearchMeSH KeywordsActinsAdherens JunctionsAnimalsCell MembraneCells, CulturedChick EmbryoCluster AnalysisCulture Media, ConditionedDiffusionElectric ImpedanceExtracellular MatrixGene Expression ProfilingGene Expression Regulation, DevelopmentalGenomeIon ChannelsKineticsMelaninsMembrane ProteinsMicrotubulesOligonucleotide Array Sequence AnalysisPhagocytosisRetinal Pigment EpitheliumRNA, MessengerSubcellular FractionsTight JunctionsVisual PathwaysConceptsGene expression
2007
Analysis of the RPE transcriptome reveals dynamic changes during the development of the outer blood-retinal barrier.
Rizzolo LJ, Chen X, Weitzman M, Sun R, Zhang H. Analysis of the RPE transcriptome reveals dynamic changes during the development of the outer blood-retinal barrier. Molecular Vision 2007, 13: 1259-73. PMID: 17679949.Peer-Reviewed Original ResearchMeSH KeywordsActinsAnimalsBlood-Retinal BarrierCell Cycle ProteinsChick EmbryoCluster AnalysisCollagenExtracellular MatrixGene Expression ProfilingIntercellular JunctionsLamininMembrane ProteinsMicrotubule-Associated ProteinsMyosinsOligonucleotide Array Sequence AnalysisPhagocytosisPigment Epithelium of EyeProtein SubunitsProteinsReceptors, Cell SurfaceReverse Transcriptase Polymerase Chain ReactionRNA, MessengerTranscription, GeneticConceptsPattern of expressionExtensive remodelingAffymetrix microarray chipsCell-cell junctionsSignal transduction pathwaysExtracellular matrix interactionsAdherens junction proteinsTranscellular ion transportCell surface receptorsGenomic approachesEntire genomeGene OntologyTransduction pathwaysSTEM softwareZO-3Biological pathwaysFunctional clusteringMatrix interactionsExtracellular matrixSurface receptorsJunctional complexesMicroarray chipContinuous remodelingFalse discovery rateAffymetrix software
2006
Expression of JAM-A, AF-6, PAR-3 and PAR-6 during the assembly and remodeling of RPE tight junctions
Luo Y, Fukuhara M, Weitzman M, Rizzolo LJ. Expression of JAM-A, AF-6, PAR-3 and PAR-6 during the assembly and remodeling of RPE tight junctions. Brain Research 2006, 1110: 55-63. PMID: 16859655, DOI: 10.1016/j.brainres.2006.06.059.Peer-Reviewed Original Research
2004
The apical and basal environments of the retinal pigment epithelium regulate the maturation of tight junctions during development
Rahner C, Fukuhara M, Peng S, Kojima S, Rizzolo LJ. The apical and basal environments of the retinal pigment epithelium regulate the maturation of tight junctions during development. Journal Of Cell Science 2004, 117: 3307-3318. PMID: 15226402, DOI: 10.1242/jcs.01181.Peer-Reviewed Original ResearchAnimalsCell SeparationCells, CulturedChick EmbryoCulture Media, ConditionedDNA PrimersElectric ImpedanceElectrophysiologyFibroblastsFreeze FracturingGene Expression Regulation, DevelopmentalMicroscopy, FluorescenceNerve Tissue ProteinsPigment Epithelium of EyePolymerase Chain ReactionRetinaReverse Transcriptase Polymerase Chain ReactionRNA, MessengerTight JunctionsTime Factors
2000
Regulation of glucose transporters during development of the retinal pigment epithelium
Ban Y, Rizzolo L. Regulation of glucose transporters during development of the retinal pigment epithelium. Brain Research 2000, 121: 89-95. PMID: 10837896, DOI: 10.1016/s0165-3806(00)00028-6.Peer-Reviewed Original ResearchAnimalsBlood-Brain BarrierBlotting, NorthernChick EmbryoGene Expression Regulation, DevelopmentalGlucose Transporter Type 1Glucose Transporter Type 2Glucose Transporter Type 3Monosaccharide Transport ProteinsNerve Tissue ProteinsPigment Epithelium of EyeReverse Transcriptase Polymerase Chain ReactionRNA, MessengerTight Junctions