2021
Developmental partitioning of SYK and ZAP70 prevents autoimmunity and cancer
Sadras T, Martin M, Kume K, Robinson ME, Saravanakumar S, Lenz G, Chen Z, Song JY, Siddiqi T, Oksa L, Knapp AM, Cutler J, Cosgun KN, Klemm L, Ecker V, Winchester J, Ghergus D, Soulas-Sprauel P, Kiefer F, Heisterkamp N, Pandey A, Ngo V, Wang L, Jumaa H, Buchner M, Ruland J, Chan WC, Meffre E, Martin T, Müschen M. Developmental partitioning of SYK and ZAP70 prevents autoimmunity and cancer. Molecular Cell 2021, 81: 2094-2111.e9. PMID: 33878293, PMCID: PMC8239336, DOI: 10.1016/j.molcel.2021.03.043.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntigens, CD19AutoimmunityB-LymphocytesCalciumCell DifferentiationCell Transformation, NeoplasticEnzyme ActivationHumansImmune ToleranceLymphoma, B-CellMiceModels, GeneticNeoplasm ProteinsNeoplasmsNFATC Transcription FactorsPhosphatidylinositol 3-KinasesProtein BindingReceptors, Antigen, B-CellSignal TransductionSyk KinaseZAP-70 Protein-Tyrosine Kinase
2020
IFITM3 functions as a PIP3 scaffold to amplify PI3K signalling in B cells
Lee J, Robinson ME, Ma N, Artadji D, Ahmed MA, Xiao G, Sadras T, Deb G, Winchester J, Cosgun KN, Geng H, Chan LN, Kume K, Miettinen TP, Zhang Y, Nix MA, Klemm L, Chen CW, Chen J, Khairnar V, Wiita AP, Thomas-Tikhonenko A, Farzan M, Jung JU, Weinstock DM, Manalis SR, Diamond MS, Vaidehi N, Müschen M. IFITM3 functions as a PIP3 scaffold to amplify PI3K signalling in B cells. Nature 2020, 588: 491-497. PMID: 33149299, PMCID: PMC8087162, DOI: 10.1038/s41586-020-2884-6.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntigens, CD19B-LymphocytesCell Transformation, NeoplasticFemaleGerminal CenterHumansIntegrinsMembrane MicrodomainsMembrane ProteinsMiceMice, Inbred C57BLMice, Inbred NODModels, MolecularPhosphatidylinositol 3-KinasesPhosphatidylinositol PhosphatesPhosphorylationReceptors, Antigen, B-CellRNA-Binding ProteinsSignal TransductionConceptsPI3KCell leukemiaAntiviral effector functionsAntigen-specific antibodiesInterferon-induced transmembrane proteinsIFITM3 functionDevelopment of leukemiaCell surfacePoor outcomeOncogenic PI3KClinical cohortEffector functionsGerminal centersMouse modelB cellsExpression of IFITM3Malignant transformationAccumulation of PIP3PI3K signalsCell receptorNormal numbersLeukemiaDefective expressionEndosomal proteinIFITM3Integrin α6 mediates the drug resistance of acute lymphoblastic B-cell leukemia
Gang EJ, Kim HN, Hsieh YT, Ruan Y, Ogana HA, Lee S, Pham J, Geng H, Park E, Klemm L, Willman CL, Carroll WL, Mittelman SD, Orgel E, Oberley MJ, Parekh C, Abdel-Azim H, Bhojwani D, Wayne AS, De Arcangelis A, Georges-Labouesse E, Wayner E, Bonig H, Minasyan A, ten Hoeve J, Graeber TG, Müschen M, Heisterkamp N, Kim YM. Integrin α6 mediates the drug resistance of acute lymphoblastic B-cell leukemia. Blood 2020, 136: 210-223. PMID: 32219444, PMCID: PMC7357190, DOI: 10.1182/blood.2019001417.Peer-Reviewed Original ResearchConceptsAcute lymphoblastic leukemiaDrug resistanceTyrosine kinase inhibitor treatmentIntegrin α6Minimal residual diseaseProteomic analysisAcute lymphoblastic B-cell leukemiaAdhesion-mediated drug resistanceKinase inhibitor treatmentNovel therapeutic targetConditional knockout modelCentral nervous systemSrc signalingB-cell leukemiaPhosphorylated LynCell adhesionVivo deletionKnockout modelsResidual diseaseLymphoblastic leukemiaKinase inhibitionTherapeutic targetNervous systemB cellsBCR-ABL1
2019
Histone H3 trimethylation at lysine 36 guides m6A RNA modification co-transcriptionally
Huang H, Weng H, Zhou K, Wu T, Zhao BS, Sun M, Chen Z, Deng X, Xiao G, Auer F, Klemm L, Wu H, Zuo Z, Qin X, Dong Y, Zhou Y, Qin H, Tao S, Du J, Liu J, Lu Z, Yin H, Mesquita A, Yuan CL, Hu YC, Sun W, Su R, Dong L, Shen C, Li C, Qing Y, Jiang X, Wu X, Sun M, Guan JL, Qu L, Wei M, Müschen M, Huang G, He C, Yang J, Chen J. Histone H3 trimethylation at lysine 36 guides m6A RNA modification co-transcriptionally. Nature 2019, 567: 414-419. PMID: 30867593, PMCID: PMC6438714, DOI: 10.1038/s41586-019-1016-7.Peer-Reviewed Original ResearchConceptsM6A methyltransferase complexHistone H3 trimethylationH3 trimethylationHistone modificationsImportant post-transcriptional mechanismMouse embryonic stem cellsGene expression regulationRNA polymerase IIPrevalent internal modificationPost-transcriptional mechanismsEmbryonic stem cellsN6-methyladenosine (m<sup>6</sup>A) mRNA modificationM6A depositionTranscription elongationNascent RNAMethyltransferase complexPolymerase IIExpression regulationGene expression1RNA methylationMRNA modificationMETTL14 knockdownH3K36me3M6A modificationCell stemness
2018
B-Cell-Specific Diversion of Glucose Carbon Utilization Reveals a Unique Vulnerability in B Cell Malignancies
Xiao G, Chan LN, Klemm L, Braas D, Chen Z, Geng H, Zhang QC, Aghajanirefah A, Cosgun KN, Sadras T, Lee J, Mirzapoiazova T, Salgia R, Ernst T, Hochhaus A, Jumaa H, Jiang X, Weinstock DM, Graeber TG, Müschen M. B-Cell-Specific Diversion of Glucose Carbon Utilization Reveals a Unique Vulnerability in B Cell Malignancies. Cell 2018, 173: 470-484.e18. PMID: 29551267, PMCID: PMC6284818, DOI: 10.1016/j.cell.2018.02.048.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsB-LymphocytesCarbonCell Line, TumorCell SurvivalGlucoseGlucosephosphate DehydrogenaseGlycolysisHumansIkaros Transcription FactorMiceMice, Inbred C57BLMice, Inbred NODOxidative StressPAX5 Transcription FactorPentose Phosphate PathwayPrecursor Cell Lymphoblastic Leukemia-LymphomaProtein Phosphatase 2Proto-Oncogene Proteins c-bcl-2Transcription, GeneticConceptsPentose phosphate pathwayCarbon utilizationSerine/threonine protein phosphatase 2AB-cell transcription factor PAX5Transcription factor Pax5Favor of glycolysisSmall molecule inhibitionPhosphatase 2ATranscriptional repressionRedox homeostasisOncogenic transformationTumor suppressorMolecule inhibitionPP2AGenetic studiesPhosphate pathwayB cell activationEssential roleB-cell malignanciesCell malignanciesB cellsAntioxidant protectionOxidative stressB-cell tumorsCell activation
2015
Erk Negative Feedback Control Enables Pre-B Cell Transformation and Represents a Therapeutic Target in Acute Lymphoblastic Leukemia
Shojaee S, Caeser R, Buchner M, Park E, Swaminathan S, Hurtz C, Geng H, Chan LN, Klemm L, Hofmann WK, Qiu YH, Zhang N, Coombes KR, Paietta E, Molkentin J, Koeffler HP, Willman CL, Hunger SP, Melnick A, Kornblau SM, Müschen M. Erk Negative Feedback Control Enables Pre-B Cell Transformation and Represents a Therapeutic Target in Acute Lymphoblastic Leukemia. Cancer Cell 2015, 28: 114-128. PMID: 26073130, PMCID: PMC4565502, DOI: 10.1016/j.ccell.2015.05.008.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntineoplastic AgentsCell Transformation, NeoplasticDNA-Binding ProteinsDual Specificity Phosphatase 6Host Cell Factor C1HumansIntracellular Signaling Peptides and ProteinsMAP Kinase Signaling SystemMembrane ProteinsMiceMice, TransgenicMolecular Sequence DataPrecursor Cell Lymphoblastic Leukemia-LymphomaPrognosisProtein Serine-Threonine KinasesSmall Molecule LibrariesTranscription FactorsConceptsAcute lymphoblastic leukemiaLymphoblastic leukemiaPatient-derived preNegative feedback regulationPre-B cell cloneCell deathImmediate cell deathMouse modelSmall molecule inhibitorsTherapeutic targetAcute activationMalignant transformationCell clonesFeedback regulationOncogenic signalingMolecule inhibitorsStrong activationLeukemiaDeathERKPre-B-cell transformationCell transformationActivationOncogenic transformationVast majorityMechanisms of clonal evolution in childhood acute lymphoblastic leukemia
Swaminathan S, Klemm L, Park E, Papaemmanuil E, Ford A, Kweon SM, Trageser D, Hasselfeld B, Henke N, Mooster J, Geng H, Schwarz K, Kogan SC, Casellas R, Schatz DG, Lieber MR, Greaves MF, Müschen M. Mechanisms of clonal evolution in childhood acute lymphoblastic leukemia. Nature Immunology 2015, 16: 766-774. PMID: 25985233, PMCID: PMC4475638, DOI: 10.1038/ni.3160.Peer-Reviewed Original ResearchMeSH KeywordsAdolescentAnimalsAntibody DiversityB-LymphocytesChildChild, PreschoolClonal EvolutionCytidine DeaminaseDNA-Binding ProteinsFemaleFlow CytometryHomeodomain ProteinsHumansImmunoblottingInfantMaleMice, Inbred NODMice, KnockoutMice, SCIDMice, TransgenicMicroscopy, FluorescencePrecursor Cell Lymphoblastic Leukemia-LymphomaPrecursor Cells, B-LymphoidReverse Transcriptase Polymerase Chain ReactionTumor Cells, CulturedSignalling thresholds and negative B-cell selection in acute lymphoblastic leukaemia
Chen Z, Shojaee S, Buchner M, Geng H, Lee JW, Klemm L, Titz B, Graeber TG, Park E, Tan YX, Satterthwaite A, Paietta E, Hunger SP, Willman CL, Melnick A, Loh ML, Jung JU, Coligan JE, Bolland S, Mak TW, Limnander A, Jumaa H, Reth M, Weiss A, Lowell CA, Müschen M. Signalling thresholds and negative B-cell selection in acute lymphoblastic leukaemia. Nature 2015, 521: 357-361. PMID: 25799995, PMCID: PMC4441554, DOI: 10.1038/nature14231.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid MotifsAnimalsAntigens, CDB-LymphocytesCell DeathCell Line, TumorCell Transformation, NeoplasticDisease Models, AnimalDrug Resistance, NeoplasmEnzyme ActivationFemaleFusion Proteins, bcr-ablGene DeletionHumansInositol Polyphosphate 5-PhosphatasesIntracellular Signaling Peptides and ProteinsMiceMice, Inbred NODMice, SCIDPhosphatidylinositol-3,4,5-Trisphosphate 5-PhosphatasesPhosphoric Monoester HydrolasesPlatelet Endothelial Cell Adhesion Molecule-1Precursor Cell Lymphoblastic Leukemia-LymphomaPrecursor Cells, B-LymphoidProtein Tyrosine Phosphatase, Non-Receptor Type 6Protein-Tyrosine KinasesReceptors, Antigen, B-CellReceptors, ImmunologicSignal TransductionSyk KinaseTyrosineXenograft Model Antitumor AssaysIdentification of FOXM1 as a therapeutic target in B-cell lineage acute lymphoblastic leukaemia
Buchner M, Park E, Geng H, Klemm L, Flach J, Passegué E, Schjerven H, Melnick A, Paietta E, Kopanja D, Raychaudhuri P, Müschen M. Identification of FOXM1 as a therapeutic target in B-cell lineage acute lymphoblastic leukaemia. Nature Communications 2015, 6: 6471. PMID: 25753524, PMCID: PMC4366523, DOI: 10.1038/ncomms7471.Peer-Reviewed Original ResearchMeSH KeywordsAdultAnimalsAntineoplastic AgentsB-LymphocytesCell ProliferationCell SurvivalChildClinical Trials as TopicCyclin-Dependent Kinase Inhibitor p16Drug Resistance, NeoplasmForkhead Box Protein M1Forkhead Box Protein O3Forkhead Transcription FactorsGene Expression Regulation, LeukemicHumansMicePeptidesPrecursor Cell Lymphoblastic Leukemia-LymphomaSignal TransductionSurvival AnalysisThiostreptonXenograft Model Antitumor AssaysConceptsAcute lymphoblastic leukemiaLymphoblastic leukemiaTherapeutic targetB-cell lineage acute lymphoblastic leukemiaFOXM1 levelsAggressive clinical coursePre-B cell receptor checkpointNovel therapeutic targetB cell populationsNormal B cell populationsClinical coursePoor outcomeCure rateNormal B cell developmentFOXM1 inhibitionB cell developmentDrug resistanceFoxm1 deletionFOXM1Colony formationPatientsLeukemiaCell survivalPrognosisTranscriptional inactivation
2013
AID downregulation is a novel function of the DNMT inhibitor 5-aza-deoxycytidine
Tsai CT, Yang PM, Chern TR, Chuang SH, Lin JH, Klemm L, Müschen M, Chen CC. AID downregulation is a novel function of the DNMT inhibitor 5-aza-deoxycytidine. Oncotarget 2013, 5: 211-223. PMID: 24457556, PMCID: PMC3960202, DOI: 10.18632/oncotarget.1319.Peer-Reviewed Original ResearchConceptsActivation-induced cytidine deaminaseClass switch recombinationTumor suppressor geneHematopoietic cancer cellsAID expressionSomatic hypermutationNovel biological functionDNMT inhibitor 5Cancer cellsHost genesProteasomal degradationDNMT inhibitorsNovel functionBiological functionsInhibitor 5Suppressor geneSwitch recombinationImmunoglobulin genesCancer progressionCytidine deaminaseGenesDNMT1ZEBMolecular dockingActive siteSmall-molecule inhibition of CBP/catenin interactions eliminates drug-resistant clones in acute lymphoblastic leukemia
Gang EJ, Hsieh YT, Pham J, Zhao Y, Nguyen C, Huantes S, Park E, Naing K, Klemm L, Swaminathan S, Conway EM, Pelus LM, Crispino J, Mullighan CG, McMillan M, Müschen M, Kahn M, Kim YM. Small-molecule inhibition of CBP/catenin interactions eliminates drug-resistant clones in acute lymphoblastic leukemia. Oncogene 2013, 33: 2169-2178. PMID: 23728349, PMCID: PMC3994178, DOI: 10.1038/onc.2013.169.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntineoplastic AgentsAsparaginaseBeta CateninBridged Bicyclo Compounds, HeterocyclicCell Line, TumorCell ProliferationCell SurvivalDexamethasoneDown-RegulationDrug Resistance, NeoplasmDrug SynergismHumansInhibitor of Apoptosis ProteinsMiceMice, Inbred NODMice, SCIDMutationPeptide FragmentsPrecursor Cell Lymphoblastic Leukemia-LymphomaPyrimidinonesSialoglycoproteinsSurvivinVincristineWnt Signaling PathwayXenograft Model Antitumor AssaysConceptsICG-001Activation of genesDivergent cellular responsesProgenitor cellsInitiation of differentiationSmall molecule modulatorsAcute lymphoblastic leukemiaAmino acids 1Small molecule inhibitionWnt/cateninNovel small molecule modulatorsPrimary acute lymphoblastic leukemiaCoactivator CBPChromatin immunoprecipitationTranscriptional activationHematopoietic progenitor cellsSelf-renewal capacityApoptosis proteinNormal hematopoietic progenitor cellsCBP mutationsN-terminusCellular responsesC-terminalCatenin interactionSurvivin promoterBoth CpG Methylation and Activation-Induced Deaminase Are Required for the Fragility of the Human bcl-2 Major Breakpoint Region: Implications for the Timing of the Breaks in the t(14;18) Translocation
Cui X, Lu Z, Kurosawa A, Klemm L, Bagshaw AT, Tsai AG, Gemmell N, Müschen M, Adachi N, Hsieh CL, Lieber MR. Both CpG Methylation and Activation-Induced Deaminase Are Required for the Fragility of the Human bcl-2 Major Breakpoint Region: Implications for the Timing of the Breaks in the t(14;18) Translocation. Molecular And Cellular Biology 2013, 33: 947-957. PMID: 23263985, PMCID: PMC3623081, DOI: 10.1128/mcb.01436-12.Peer-Reviewed Original ResearchB-LymphocytesCell LineChromosome BreakpointsChromosomes, Human, Pair 14Chromosomes, Human, Pair 18CpG IslandsCytidine DeaminaseDNADNA MethylationDNA-Binding ProteinsEndonucleasesGene Knockout TechniquesGenes, bcl-2Homeodomain ProteinsHumansNuclear ProteinsProto-Oncogene Proteins c-bcl-2Translocation, GeneticIntegrin alpha4 blockade sensitizes drug resistant pre-B acute lymphoblastic leukemia to chemotherapy
Hsieh YT, Gang EJ, Geng H, Park E, Huantes S, Chudziak D, Dauber K, Schaefer P, Scharman C, Shimada H, Shojaee S, Klemm L, Parameswaran R, Loh M, Kang ES, Koo HH, Hofmann WK, Andrade J, Crooks GM, Willman CL, Müschen M, Papayannopoulou T, Heisterkamp N, Bönig H, Kim YM. Integrin alpha4 blockade sensitizes drug resistant pre-B acute lymphoblastic leukemia to chemotherapy. Blood 2013, 121: 1814-1818. PMID: 23319569, PMCID: PMC3591800, DOI: 10.1182/blood-2012-01-406272.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntibodies, Monoclonal, HumanizedBone MarrowCell AdhesionChildDrug Resistance, NeoplasmFlow CytometryFusion Proteins, bcr-ablHumansIntegrasesIntegrin alpha4MiceMice, Inbred NODMice, KnockoutMice, SCIDNatalizumabNeoplasm, ResidualPrecursor B-Cell Lymphoblastic Leukemia-LymphomaReal-Time Polymerase Chain ReactionReverse Transcriptase Polymerase Chain ReactionRNA, MessengerStromal CellsConceptsBone marrowMalignant B-cell precursorsNOD/SCID recipientsAcute lymphoblastic leukemia cellsLeukemia cellsAcute lymphoblastic leukemiaLack of efficacyMinimal residual diseaseLymphoblastic leukemia cellsB cell precursorsModels of leukemiaSCID recipientsPoor outcomeResidual diseaseCurrent therapiesLymphoblastic leukemiaChemotherapyConditional deletionBlockadeIntegrin alpha4LeukemiaGene expression analysisCellsAlpha4Novel strategy
2012
Vitamin D protects acute lymphoblastic leukemia cells from dexamethasone.
Antony R, Sheng X, Ehsanipour EA, Ng E, Pramanik R, Klemm L, Ichihara B, Mittelman SD. Vitamin D protects acute lymphoblastic leukemia cells from dexamethasone. Leukemia Research 2012, 36: 591-3. PMID: 22341429, PMCID: PMC3312954, DOI: 10.1016/j.leukres.2012.01.011.Peer-Reviewed Original Research
2011
Targeting survivin overcomes drug resistance in acute lymphoblastic leukemia
Park E, Gang EJ, Hsieh YT, Schaefer P, Chae S, Klemm L, Huantes S, Loh M, Conway EM, Kang ES, Koo H, Hofmann WK, Heisterkamp N, Pelus L, Keerthivasan G, Crispino J, Kahn M, Müschen M, Kim YM. Targeting survivin overcomes drug resistance in acute lymphoblastic leukemia. Blood 2011, 118: 2191-2199. PMID: 21715311, PMCID: PMC3162353, DOI: 10.1182/blood-2011-04-351239.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCombined Modality TherapyDrug Resistance, NeoplasmGene ExpressionGene TargetingHumansInhibitor of Apoptosis ProteinsMiceMice, Inbred NODMice, KnockoutNeoplasm, ResidualOligonucleotidesPrecursor Cell Lymphoblastic Leukemia-LymphomaRepressor ProteinsRNA, Small InterferingSurvivinTumor Stem Cell AssayXenograft Model Antitumor AssaysConceptsAcute lymphoblastic leukemiaDrug resistanceLymphoblastic leukemiaDrug-resistant acute lymphoblastic leukemiaDetectable minimal residual diseasePrimary acute lymphoblastic leukemiaNucleic acid antisense oligonucleotideMinimal residual diseaseInhibition of survivinResidual diseaseSurvival advantageXenograft modelSurvivin expressionSurvivin inhibitionLeukemiaSurvivinChemotherapyRelapseAntisense oligonucleotideSurvivin/BIRC5Present studyApoptosis proteinInhibitionCellsPatientsBCL6 enables Ph+ acute lymphoblastic leukaemia cells to survive BCR–ABL1 kinase inhibition
Duy C, Hurtz C, Shojaee S, Cerchietti L, Geng H, Swaminathan S, Klemm L, Kweon SM, Nahar R, Braig M, Park E, Kim YM, Hofmann WK, Herzog S, Jumaa H, Koeffler HP, Yu JJ, Heisterkamp N, Graeber TG, Wu H, Ye BH, Melnick A, Müschen M. BCL6 enables Ph+ acute lymphoblastic leukaemia cells to survive BCR–ABL1 kinase inhibition. Nature 2011, 473: 384-388. PMID: 21593872, PMCID: PMC3597744, DOI: 10.1038/nature09883.Peer-Reviewed Original ResearchMeSH KeywordsADP-Ribosylation Factor 1AnimalsCell SurvivalDNA-Binding ProteinsDrug Resistance, NeoplasmFusion Proteins, bcr-ablGene Expression Regulation, NeoplasticHumansMiceMice, Inbred NODMice, SCIDPrecursor Cell Lymphoblastic Leukemia-LymphomaProtein Kinase InhibitorsProto-Oncogene Proteins c-bcl-6Transcription, GeneticTumor Suppressor Protein p53ConceptsTyrosine kinase inhibitorsAcute lymphoblastic leukemia cellsBCR-ABL1 mutationsLymphoblastic leukemia cellsDrug resistanceLeukemia cellsLeukemia-initiating cellsXenograft modelBCR-ABL1Anticancer responseTargeted inhibitionDual inhibitionKinase inhibitorsOncogene withdrawalCancer therapyBCL6Kinase inhibitionLeukemiaInhibitionCellsTherapyMutationsUpregulation
2010
Diet-Induced Obesity Accelerates Acute Lymphoblastic Leukemia Progression in Two Murine Models
Yun JP, Behan JW, Heisterkamp N, Butturini A, Klemm L, Ji L, Groffen J, Müschen M, Mittelman SD. Diet-Induced Obesity Accelerates Acute Lymphoblastic Leukemia Progression in Two Murine Models. Cancer Prevention Research 2010, 3: 1259-1264. PMID: 20823291, PMCID: PMC2955776, DOI: 10.1158/1940-6207.capr-10-0087.Peer-Reviewed Original ResearchConceptsAcute lymphoblastic leukemiaAKR miceLeukemia incidenceAKR/J miceOld obese miceSimilar median survivalEffect of obesityInterleukin-6 levelsObesity-related hormonesAcute lymphoblastic leukemia progressionDiet-Induced ObesityHigh-fat dietMedian survivalObese miceSpleen weightLymphoblastic leukemiaWBC countJ miceMurine modelObesityAnimal modelsLeukemia progressionLeukemia pathogenesisMiceObserved associationsBCL6 is critical for the development of a diverse primary B cell repertoire
Duy C, Yu JJ, Nahar R, Swaminathan S, Kweon SM, Polo JM, Valls E, Klemm L, Shojaee S, Cerchietti L, Schuh W, Jäck HM, Hurtz C, Ramezani-Rad P, Herzog S, Jumaa H, Koeffler HP, de Alborán IM, Melnick AM, Ye BH, Müschen M. BCL6 is critical for the development of a diverse primary B cell repertoire. Journal Of Experimental Medicine 2010, 207: 1209-1221. PMID: 20498019, PMCID: PMC2882829, DOI: 10.1084/jem.20091299.Peer-Reviewed Original ResearchMeSH KeywordsADP-Ribosylation FactorsAnimalsApoptosisB-LymphocytesBase SequenceCell ProliferationCell SurvivalCells, CulturedCytoprotectionDNA DamageDNA-Binding ProteinsDown-RegulationGene Rearrangement, B-Lymphocyte, Light ChainHumansInterleukin-7LymphopoiesisMiceMolecular Sequence DataPre-B Cell ReceptorsPrecursor Cells, B-LymphoidProto-Oncogene Proteins c-bcl-6Proto-Oncogene Proteins c-mycRecombination, GeneticSignal TransductionTranscription, GeneticUp-RegulationConceptsDNA damage-induced apoptosisDamage-induced apoptosisImmunoglobulin light chain gene recombinationPre-B cell receptorBone marrow immature B cellsB cell developmentClass switch recombinationAbsence of Bcl6B cell repertoireExpression of BCL6Immature B cellsMu heavy chainDNA breaksNegative regulationPrimary B-cell repertoireGene recombinationCell developmentClonal diversityB cellsGerminal center B cellsSomatic hypermutationB cell precursorsExpression levelsBCL6 expressionCell precursors
2009
The B Cell Mutator AID Promotes B Lymphoid Blast Crisis and Drug Resistance in Chronic Myeloid Leukemia
Klemm L, Duy C, Iacobucci I, Kuchen S, von Levetzow G, Feldhahn N, Henke N, Li Z, Hoffmann TK, Kim YM, Hofmann WK, Jumaa H, Groffen J, Heisterkamp N, Martinelli G, Lieber MR, Casellas R, Müschen M. The B Cell Mutator AID Promotes B Lymphoid Blast Crisis and Drug Resistance in Chronic Myeloid Leukemia. Cancer Cell 2009, 16: 232-245. PMID: 19732723, PMCID: PMC2931825, DOI: 10.1016/j.ccr.2009.07.030.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsB-LymphocytesBenzamidesBlast CrisisCell Line, TumorCytidine DeaminaseDrug Resistance, NeoplasmFusion Proteins, bcr-ablGreen Fluorescent ProteinsHumansImatinib MesylateLeukemia, Myelogenous, Chronic, BCR-ABL PositiveLuciferases, RenillaMiceMice, Inbred BALB CMice, KnockoutMice, SCIDMice, TransgenicMutationPiperazinesPyrimidinesXenograft Model Antitumor AssaysConceptsLymphoid blast crisisChronic myeloid leukemiaB-lymphoid blast crisisBCR-ABL1 mutationsDrug resistanceMyeloid leukemiaBlast crisisCML cellsMechanisms of progressionImatinib resistanceClinical significanceBCR-ABL1Causative roleDNA repair genesLeukemia cellsRepair genesLeukemiaTumor suppressorAID expressionOverall genetic instabilityProgressionCellsGenetic instabilityImatinibMutationsPre–B cell receptor–mediated cell cycle arrest in Philadelphia chromosome–positive acute lymphoblastic leukemia requires IKAROS function
Trageser D, Iacobucci I, Nahar R, Duy C, von Levetzow G, Klemm L, Park E, Schuh W, Gruber T, Herzog S, Kim YM, Hofmann WK, Li A, Storlazzi CT, Jäck HM, Groffen J, Martinelli G, Heisterkamp N, Jumaa H, Müschen M. Pre–B cell receptor–mediated cell cycle arrest in Philadelphia chromosome–positive acute lymphoblastic leukemia requires IKAROS function. Journal Of Experimental Medicine 2009, 206: 1739-1753. PMID: 19620627, PMCID: PMC2722172, DOI: 10.1084/jem.20090004.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Signal TransducingAdultAnimalsCell CycleCell Transformation, NeoplasticDown-RegulationGene DeletionGenes, ablHumansIkaros Transcription FactorLeukemia, Prolymphocytic, B-CellMiceMice, KnockoutMice, TransgenicPhiladelphia ChromosomePre-B Cell ReceptorsSignal TransductionConceptsAcute lymphoblastic leukemiaCell cycle arrestPre-B cell receptorCell receptorLymphoblastic leukemiaPre-B cell receptor functionPhiladelphia chromosome-positive acute lymphoblastic leukemiaB-cell lineage acute lymphoblastic leukemiaCycle arrestUnfavorable clinical outcomeBCR-ABL1 tyrosine kinaseB cell precursorsCase of adultsBCR-ABL1 kinaseTumor suppressionClinical outcomesReceptor functionCell precursorsCell receptor functionIkaros functionCell cycle exitDownstream moleculesReceptorsLeukemiaSubtypes