Featured Publications
Neuron-specific signatures in the chromosomal connectome associated with schizophrenia risk
Rajarajan P, Borrman T, Liao W, Schrode N, Flaherty E, Casiño C, Powell S, Yashaswini C, LaMarca EA, Kassim B, Javidfar B, Espeso-Gil S, Li A, Won H, Geschwind DH, Ho SM, MacDonald M, Hoffman GE, Roussos P, Zhang B, Hahn CG, Weng Z, Brennand KJ, Akbarian S. Neuron-specific signatures in the chromosomal connectome associated with schizophrenia risk. Science 2018, 362 PMID: 30545851, PMCID: PMC6408958, DOI: 10.1126/science.aat4311.Peer-Reviewed Original ResearchMeSH KeywordsBrainCells, CulturedChromatinChromatin Assembly and DisassemblyChromosomes, HumanConnectomeEpigenesis, GeneticGene Expression Regulation, DevelopmentalGenetic Predisposition to DiseaseGenome, HumanGenome-Wide Association StudyHumansMaleNeural Stem CellsNeurogenesisNeurogliaNeuronsNucleic Acid ConformationProtein Interaction MapsProteomicsRiskSchizophreniaTranscription, GeneticTranscriptomeConceptsCoordinated transcriptional regulationThree-dimensional genomeSpatial genome organizationChromosomal contact mapsNeural progenitor cellsSchizophrenia risk variantsGenome organizationChromatin remodelingChromosomal conformationTranscriptional regulationProteomic interactionsDevelopmental remodelingHeritable riskGlial differentiationRisk variantsContact mapsProgenitor cellsVariant sequencesGenesConformation changeNeuronal connectivitySchizophrenia riskSequenceNeuropsychiatric diseasesDistal targetsModeling gene × environment interactions in PTSD using human neurons reveals diagnosis-specific glucocorticoid-induced gene expression
Seah C, Breen M, Rusielewicz T, Bader H, Xu C, Hunter C, McCarthy B, Deans P, Chattopadhyay M, Goldberg J, Dobariya S, Desarnaud F, Makotkine I, Flory J, Bierer L, Staniskyte M, Noggle S, Huckins L, Paull D, Brennand K, Yehuda R. Modeling gene × environment interactions in PTSD using human neurons reveals diagnosis-specific glucocorticoid-induced gene expression. Nature Neuroscience 2022, 25: 1434-1445. PMID: 36266471, PMCID: PMC9630117, DOI: 10.1038/s41593-022-01161-y.Peer-Reviewed Original ResearchConceptsPost-traumatic stress disorderPeripheral blood mononuclear cellsGlucocorticoid-induced changesGlucocorticoid-induced gene expressionBlood mononuclear cellsIndividual clinical outcomesEnvironmental risk factorsHuman postmortem brainGlucocorticoid hypersensitivityClinical outcomesGlutamatergic neuronsMononuclear cellsRisk factorsHydrocortisone exposureSevere traumaPostmortem brainsHuman neuronsGlucocorticoid responseInduced neuronsStress disorderNeuronsNew therapeuticsGene expressionGene × environment interactionsCombat veteransModelling schizophrenia using human induced pluripotent stem cells
Brennand K, Simone A, Jou J, Gelboin-Burkhart C, Tran N, Sangar S, Li Y, Mu Y, Chen G, Yu D, McCarthy S, Sebat J, Gage F. Modelling schizophrenia using human induced pluripotent stem cells. Nature 2011, 473: 221-225. PMID: 21490598, PMCID: PMC3392969, DOI: 10.1038/nature09915.Peer-Reviewed Original ResearchMeSH KeywordsAdolescentAdultAntipsychotic AgentsCell DifferentiationCells, CulturedCellular ReprogrammingChildDisks Large Homolog 4 ProteinFemaleFibroblastsGene Expression ProfilingGene Expression RegulationHumansIntracellular Signaling Peptides and ProteinsLoxapineMaleMembrane ProteinsModels, BiologicalNeuritesNeuronsPhenotypePluripotent Stem CellsReceptors, GlutamateSchizophreniaYoung Adult
2024
Somatic mosaicism in schizophrenia brains reveals prenatal mutational processes
Maury E, Jones A, Seplyarskiy V, Nguyen T, Rosenbluh C, Bae T, Wang Y, Abyzov A, Khoshkhoo S, Chahine Y, Zhao S, Venkatesh S, Root E, Voloudakis G, Roussos P, Network B, Park P, Akbarian S, Brennand K, Reilly S, Lee E, Sunyaev S, Walsh C, Chess A. Somatic mosaicism in schizophrenia brains reveals prenatal mutational processes. Science 2024, 386: 217-224. PMID: 39388546, PMCID: PMC11490355, DOI: 10.1126/science.adq1456.Peer-Reviewed Original ResearchConceptsTranscription factor binding sitesWhole-genome sequencingOpen chromatinMutational processesSomatic mutationsFactor binding sitesSchizophrenia casesSchizophrenia risk genesSomatic mosaicismSomatic variantsRisk genesG mutationGene expressionGermline mutationsBinding sitesGenesMutationsIncreased somatic mutationsChromatinMosaic somatic mutationsPrenatal neurogenesisContext of schizophreniaBrain neuronsSchizophrenia brainVariantsA data-driven single-cell and spatial transcriptomic map of the human prefrontal cortex
Huuki-Myers L, Spangler A, Eagles N, Montgomery K, Kwon S, Guo B, Grant-Peters M, Divecha H, Tippani M, Sriworarat C, Nguyen A, Ravichandran P, Tran M, Seyedian A, Hyde T, Kleinman J, Battle A, Page S, Ryten M, Hicks S, Martinowich K, Collado-Torres L, Maynard K, Akbarian S, Abyzov A, Ahituv N, Arasappan D, Almagro Armenteros J, Beliveau B, Bendl J, Berretta S, Bharadwaj R, Bhattacharya A, Bicks L, Brennand K, Capauto D, Champagne F, Chatterjee T, Chatzinakos C, Chen Y, Chen H, Cheng Y, Cheng L, Chess A, Chien J, Chu Z, Clarke D, Clement A, Collado-Torres L, Cooper G, Crawford G, Dai R, Daskalakis N, Davila-Velderrain J, Deep-Soboslay A, Deng C, DiPietro C, Dracheva S, Drusinsky S, Duan Z, Duong D, Dursun C, Eagles N, Edelstein J, Emani P, Fullard J, Galani K, Galeev T, Gandal M, Gaynor S, Gerstein M, Geschwind D, Girdhar K, Goes F, Greenleaf W, Grundman J, Guo H, Guo Q, Gupta C, Hadas Y, Hallmayer J, Han X, Haroutunian V, Hawken N, He C, Henry E, Hicks S, Ho M, Ho L, Hoffman G, Huang Y, Huuki-Myers L, Hwang A, Hyde T, Iatrou A, Inoue F, Jajoo A, Jensen M, Jiang L, Jin P, Jin T, Jops C, Jourdon A, Kawaguchi R, Kellis M, Kleinman J, Kleopoulos S, Kozlenkov A, Kriegstein A, Kundaje A, Kundu S, Lee C, Lee D, Li J, Li M, Lin X, Liu S, Liu J, Liu J, Liu C, Liu S, Lou S, Loupe J, Lu D, Ma S, Ma L, Margolis M, Mariani J, Martinowich K, Maynard K, Mazariegos S, Meng R, Myers R, Micallef C, Mikhailova T, Ming G, Mohammadi S, Monte E, Montgomery K, Moore J, Moran J, Mukamel E, Nairn A, Nemeroff C, Ni P, Norton S, Nowakowski T, Omberg L, Page S, Park S, Patowary A, Pattni R, Pertea G, Peters M, Phalke N, Pinto D, Pjanic M, Pochareddy S, Pollard K, Pollen A, Pratt H, Przytycki P, Purmann C, Qin Z, Qu P, Quintero D, Raj T, Rajagopalan A, Reach S, Reimonn T, Ressler K, Ross D, Roussos P, Rozowsky J, Ruth M, Ruzicka W, Sanders S, Schneider J, Scuderi S, Sebra R, Sestan N, Seyfried N, Shao Z, Shedd N, Shieh A, Shin J, Skarica M, Snijders C, Song H, State M, Stein J, Steyert M, Subburaju S, Sudhof T, Snyder M, Tao R, Therrien K, Tsai L, Urban A, Vaccarino F, van Bakel H, Vo D, Voloudakis G, Wamsley B, Wang T, Wang S, Wang D, Wang Y, Warrell J, Wei Y, Weimer A, Weinberger D, Wen C, Weng Z, Whalen S, White K, Willsey A, Won H, Wong W, Wu H, Wu F, Wuchty S, Wylie D, Xu S, Yap C, Zeng B, Zhang P, Zhang C, Zhang B, Zhang J, Zhang Y, Zhou X, Ziffra R, Zeier Z, Zintel T. A data-driven single-cell and spatial transcriptomic map of the human prefrontal cortex. Science 2024, 384: eadh1938. PMID: 38781370, PMCID: PMC11398705, DOI: 10.1126/science.adh1938.Peer-Reviewed Original ResearchConceptsRNA sequencing dataCell type compositionGene expression platformSpatial transcriptomics technologiesAnterior-posterior axisCell-cell interactionsTranscriptome mapExpression platformHuman dorsolateral prefrontal cortexTranscriptomic technologiesSingle-cellCell typesPrefrontal cortexMolecular organizationDorsolateral prefrontal cortexHuman prefrontal cortexMassively parallel characterization of regulatory elements in the developing human cortex
Deng C, Whalen S, Steyert M, Ziffra R, Przytycki P, Inoue F, Pereira D, Capauto D, Norton S, Vaccarino F, Pollen A, Nowakowski T, Ahituv N, Pollard K, Akbarian S, Abyzov A, Ahituv N, Arasappan D, Almagro Armenteros J, Beliveau B, Bendl J, Berretta S, Bharadwaj R, Bhattacharya A, Bicks L, Brennand K, Capauto D, Champagne F, Chatterjee T, Chatzinakos C, Chen Y, Chen H, Cheng Y, Cheng L, Chess A, Chien J, Chu Z, Clarke D, Clement A, Collado-Torres L, Cooper G, Crawford G, Dai R, Daskalakis N, Davila-Velderrain J, Deep-Soboslay A, Deng C, DiPietro C, Dracheva S, Drusinsky S, Duan Z, Duong D, Dursun C, Eagles N, Edelstein J, Emani P, Fullard J, Galani K, Galeev T, Gandal M, Gaynor S, Gerstein M, Geschwind D, Girdhar K, Goes F, Greenleaf W, Grundman J, Guo H, Guo Q, Gupta C, Hadas Y, Hallmayer J, Han X, Haroutunian V, Hawken N, He C, Henry E, Hicks S, Ho M, Ho L, Hoffman G, Huang Y, Huuki-Myers L, Hwang A, Hyde T, Iatrou A, Inoue F, Jajoo A, Jensen M, Jiang L, Jin P, Jin T, Jops C, Jourdon A, Kawaguchi R, Kellis M, Khullar S, Kleinman J, Kleopoulos S, Kozlenkov A, Kriegstein A, Kundaje A, Kundu S, Lee C, Lee D, Li J, Li M, Lin X, Liu S, Liu J, Liu J, Liu C, Liu S, Lou S, Loupe J, Lu D, Ma S, Ma L, Margolis M, Mariani J, Martinowich K, Maynard K, Mazariegos S, Meng R, Myers R, Micallef C, Mikhailova T, Ming G, Mohammadi S, Monte E, Montgomery K, Moore J, Moran J, Mukamel E, Nairn A, Nemeroff C, Ni P, Norton S, Nowakowski T, Omberg L, Page S, Park S, Patowary A, Pattni R, Pertea G, Peters M, Phalke N, Pinto D, Pjanic M, Pochareddy S, Pollard K, Pollen A, Pratt H, Przytycki P, Purmann C, Qin Z, Qu P, Quintero D, Raj T, Rajagopalan A, Reach S, Reimonn T, Ressler K, Ross D, Roussos P, Rozowsky J, Ruth M, Ruzicka W, Sanders S, Schneider J, Scuderi S, Sebra R, Sestan N, Seyfried N, Shao Z, Shedd N, Shieh A, Shin J, Skarica M, Snijders C, Song H, State M, Stein J, Steyert M, Subburaju S, Sudhof T, Snyder M, Tao R, Therrien K, Tsai L, Urban A, Vaccarino F, van Bakel H, Vo D, Voloudakis G, Wamsley B, Wang T, Wang S, Wang D, Wang Y, Warrell J, Wei Y, Weimer A, Weinberger D, Wen C, Weng Z, Whalen S, White K, Willsey A, Won H, Wong W, Wu H, Wu F, Wuchty S, Wylie D, Xu S, Yap C, Zeng B, Zhang P, Zhang C, Zhang B, Zhang J, Zhang Y, Zhou X, Ziffra R, Zeier Z, Zintel T. Massively parallel characterization of regulatory elements in the developing human cortex. Science 2024, 384: eadh0559. PMID: 38781390, DOI: 10.1126/science.adh0559.Peer-Reviewed Original ResearchConceptsGene regulatory elementsRegulatory elementsRegulation of enhancer activityCharacterization of regulatory elementsCis-regulatory activityNeuronal developmentPrimary cellsEnhanced activityGene regulationHuman neuronal developmentNucleotide changesEnhancer sequencesSequence basisUpstream regulatorComprehensive catalogHuman cellsDeveloping cortexSequenceVariantsOrganoidsCellsCerebral organoidsCortexHuman cortexNucleotideSingle-cell multi-cohort dissection of the schizophrenia transcriptome
Ruzicka W, Mohammadi S, Fullard J, Davila-Velderrain J, Subburaju S, Tso D, Hourihan M, Jiang S, Lee H, Bendl J, Voloudakis G, Haroutunian V, Hoffman G, Roussos P, Kellis M, Akbarian S, Abyzov A, Ahituv N, Arasappan D, Almagro Armenteros J, Beliveau B, Berretta S, Bharadwaj R, Bhattacharya A, Bicks L, Brennand K, Capauto D, Champagne F, Chatterjee T, Chatzinakos C, Chen Y, Chen H, Cheng Y, Cheng L, Chess A, Chien J, Chu Z, Clarke D, Clement A, Collado-Torres L, Cooper G, Crawford G, Dai R, Daskalakis N, Deep-Soboslay A, Deng C, DiPietro C, Dracheva S, Drusinsky S, Duan Z, Duong D, Dursun C, Eagles N, Edelstein J, Emani P, Galani K, Galeev T, Gandal M, Gaynor S, Gerstein M, Geschwind D, Girdhar K, Goes F, Greenleaf W, Grundman J, Guo H, Guo Q, Gupta C, Hadas Y, Hallmayer J, Han X, Hawken N, He C, Henry E, Hicks S, Ho M, Ho L, Huang Y, Huuki-Myers L, Hwang A, Hyde T, Iatrou A, Inoue F, Jajoo A, Jensen M, Jiang L, Jin P, Jin T, Jops C, Jourdon A, Kawaguchi R, Kleinman J, Kleopoulos S, Kozlenkov A, Kriegstein A, Kundaje A, Kundu S, Lee C, Lee D, Li J, Li M, Lin X, Liu S, Liu J, Liu J, Liu C, Liu S, Lou S, Loupe J, Lu D, Ma S, Ma L, Margolis M, Mariani J, Martinowich K, Maynard K, Mazariegos S, Meng R, Myers R, Micallef C, Mikhailova T, Ming G, Monte E, Montgomery K, Moore J, Moran J, Mukamel E, Nairn A, Nemeroff C, Ni P, Norton S, Nowakowski T, Omberg L, Page S, Park S, Patowary A, Pattni R, Pertea G, Peters M, Phalke N, Pinto D, Pjanic M, Pochareddy S, Pollard K, Pollen A, Pratt H, Przytycki P, Purmann C, Qin Z, Qu P, Quintero D, Raj T, Rajagopalan A, Reach S, Reimonn T, Ressler K, Ross D, Rozowsky J, Ruth M, Sanders S, Schneider J, Scuderi S, Sebra R, Sestan N, Seyfried N, Shao Z, Shedd N, Shieh A, Shin J, Skarica M, Snijders C, Song H, State M, Stein J, Steyert M, Sudhof T, Snyder M, Tao R, Therrien K, Tsai L, Urban A, Vaccarino F, van Bakel H, Vo D, Wamsley B, Wang T, Wang S, Wang D, Wang Y, Warrell J, Wei Y, Weimer A, Weinberger D, Wen C, Weng Z, Whalen S, White K, Willsey A, Won H, Wong W, Wu H, Wu F, Wuchty S, Wylie D, Xu S, Yap C, Zeng B, Zhang P, Zhang C, Zhang B, Zhang J, Zhang Y, Zhou X, Ziffra R, Zeier Z, Zintel T. Single-cell multi-cohort dissection of the schizophrenia transcriptome. Science 2024, 384: eadg5136. PMID: 38781388, DOI: 10.1126/science.adg5136.Peer-Reviewed Original ResearchConceptsGenetic risk factorsRisk factorsTranscriptional changesHeterogeneity of schizophreniaNeuronal cell statesSchizophrenia pathophysiologySingle-cell dissectionExcitatory neuronsEffective therapySchizophrenia transcriptomicsCortical cytoarchitectureSingle-cell atlasGenomic variantsCell groupsHuman prefrontal cortexMolecular pathwaysSchizophreniaTranscriptional alterationsTranscriptomic changesPrefrontal cortexCell statesAlterationsTherapyPathophysiologyDissection
2023
Lineage specific 3D genome structure in the adult human brain and neurodevelopmental changes in the chromatin interactome
Rahman S, Dong P, Apontes P, Fernando M, Kosoy R, Townsley K, Girdhar K, Bendl J, Shao Z, Misir R, Tsankova N, Kleopoulos S, Brennand K, Fullard J, Roussos P. Lineage specific 3D genome structure in the adult human brain and neurodevelopmental changes in the chromatin interactome. Nucleic Acids Research 2023, 51: 11142-11161. PMID: 37811875, PMCID: PMC10639075, DOI: 10.1093/nar/gkad798.Peer-Reviewed Original ResearchConceptsChromatin interactomeNeural developmentSpecific gene expressionEnhancer-promoter loopsDistinct cell typesGenome compartmentalizationRepressive compartmentGenome architectureFine-scale changesGenome structureChromatin loopsGWAS lociTAD boundariesTranscriptional inactivationActive promotersGene expressionInteractomeGenomeCell typesComplex organDisease mechanismsHuman brainAdult prefrontal cortexAdult human brainNeurodevelopmental processesActivity-Dependent Transcriptional Program in NGN2+ Neurons Enriched for Genetic Risk for Brain-Related Disorders
Ma Y, Bendl J, Hartley B, Fullard J, Abdelaal R, Ho S, Kosoy R, Gochman P, Rapoport J, Hoffman G, Brennand K, Roussos P. Activity-Dependent Transcriptional Program in NGN2+ Neurons Enriched for Genetic Risk for Brain-Related Disorders. Biological Psychiatry 2023, 95: 187-198. PMID: 37454787, PMCID: PMC10787819, DOI: 10.1016/j.biopsych.2023.07.003.Peer-Reviewed Original ResearchMeSH KeywordsBrainGene Expression RegulationHumansInduced Pluripotent Stem CellsNeuronsSchizophreniaConceptsTranscriptional programsBrain-related disordersGlutamatergic neuronsGene coexpression network analysisSignificant heritability enrichmentsEnhancer-promoter interactionsCoexpression network analysisDisease-associated genesExpression of genesLarge-scale geneticMultiomics data integrationChromatin accessibilityEpigenomic changesHeritability enrichmentGenetic regulationRegulatory elementsMultiple genesSequence variationGene expressionAxon guidanceGenetic riskPotassium chloride-induced depolarizationActivity-dependent changesDepolarization-induced changesGenes
2022
Chromatin profiling in human neurons reveals aberrant roles for histone acetylation and BET family proteins in schizophrenia
Farrelly L, Zheng S, Schrode N, Topol A, Bhanu N, Bastle R, Ramakrishnan A, Chan J, Cetin B, Flaherty E, Shen L, Gleason K, Tamminga C, Garcia B, Li H, Brennand K, Maze I. Chromatin profiling in human neurons reveals aberrant roles for histone acetylation and BET family proteins in schizophrenia. Nature Communications 2022, 13: 2195. PMID: 35459277, PMCID: PMC9033776, DOI: 10.1038/s41467-022-29922-0.Peer-Reviewed Original ResearchConceptsHistone posttranslational modificationsPosttranslational modificationsUnbiased proteomic approachPluripotent stem cellsPatient-derived neuronsH2A.Z acetylationChromatin profilingHyperacetylated histonesFamily proteinsProteomic approachProtein interactionsHistone acetylationTranscriptional abnormalitiesEpigenetic factorsExtraterminal (BET) proteinsSZ casesRisk variantsHuman neuronsStem cellsAberrant roleProtein inhibitionBona fideTreatment of schizophreniaPostmortem human brainCritical role
2021
Using the dCas9-KRAB system to repress gene expression in hiPSC-derived NGN2 neurons
Li A, Cartwright S, Yu A, Ho SM, Schrode N, Deans PJM, Matos MR, Garcia MF, Townsley KG, Zhang B, Brennand KJ. Using the dCas9-KRAB system to repress gene expression in hiPSC-derived NGN2 neurons. STAR Protocols 2021, 2: 100580. PMID: 34151300, PMCID: PMC8188621, DOI: 10.1016/j.xpro.2021.100580.Peer-Reviewed Original ResearchConceptsCRISPR inhibitionGene expressionDCas9-KRAB systemEndogenous gene expressionMultiple target genesGene repressionGene activationTarget genesGene manipulationFusion proteinComplete detailsPluripotent stemExpressionGlutamatergic neuronsRepressionGenesPhenotypicProteinStemNeuronsActivationBrain diseasesInhibitionApplying stem cells and CRISPR engineering to uncover the etiology of schizophrenia
Michael Deans P, Brennand K. Applying stem cells and CRISPR engineering to uncover the etiology of schizophrenia. Current Opinion In Neurobiology 2021, 69: 193-201. PMID: 34010781, PMCID: PMC8387340, DOI: 10.1016/j.conb.2021.04.003.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsCell type-specific fashionStem cell biologyType-specific fashionDisease-associated variantsNeural cell typesCommon genetic variantsMore genesCell biologyCRISPR engineeringGene manipulationGene targetsCRISPR technologyMolecular geneticsInvaluable advancesCell typesHiPSC technologyGenetic variantsStem cellsIndividual variantsEtiology of diseasePolygenic disorderVariantsComplex interactionsRecent advancesEtiology of schizophreniaFitness selection of hyperfusogenic measles virus F proteins associated with neuropathogenic phenotypes
Ikegame S, Hashiguchi T, Hung C, Dobrindt K, Brennand K, Takeda M, Lee B. Fitness selection of hyperfusogenic measles virus F proteins associated with neuropathogenic phenotypes. Proceedings Of The National Academy Of Sciences Of The United States Of America 2021, 118: e2026027118. PMID: 33903248, PMCID: PMC8106313, DOI: 10.1073/pnas.2026027118.Peer-Reviewed Original ResearchConceptsF mutantsMeasles inclusion body encephalitisBSR-T7 cellsMeasles virus F proteinReceptor-binding proteinVirus F proteinGenomic contextFitness advantageWild-type MeVRegulatory domainHyperfusogenic phenotypePrimary human neuronsMutant libraryPoint mutantsMutantsFitness selectionMeV receptorsF phenotypeInclusion body encephalitisNeuropathogenic phenotypeFitness landscapeChronic latent infectionFusion geneF proteinHuman neuronsInduced Pluripotent Stem Cells in Psychiatry: An Overview and Critical Perspective
De Los Angeles A, Fernando M, Hall N, Brennand K, Harrison P, Maher B, Weinberger D, Tunbridge E. Induced Pluripotent Stem Cells in Psychiatry: An Overview and Critical Perspective. Biological Psychiatry 2021, 90: 362-372. PMID: 34176589, PMCID: PMC8375580, DOI: 10.1016/j.biopsych.2021.04.008.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsCircadian rhythms in bipolar disorder patient-derived neurons predict lithium response: preliminary studies
Mishra H, Ying N, Luis A, Wei H, Nguyen M, Nakhla T, Vandenburgh S, Alda M, Berrettini W, Brennand K, Calabrese J, Coryell W, Frye M, Gage F, Gershon E, McInnis M, Nievergelt C, Nurnberger J, Shilling P, Oedegaard K, Zandi P, Kelsoe J, Welsh D, McCarthy M. Circadian rhythms in bipolar disorder patient-derived neurons predict lithium response: preliminary studies. Molecular Psychiatry 2021, 26: 3383-3394. PMID: 33674753, PMCID: PMC8418615, DOI: 10.1038/s41380-021-01048-7.Peer-Reviewed Original ResearchConceptsNeuronal precursor cellsBipolar disorderCircadian rhythm abnormalitiesRhythm abnormalitiesBD groupCircadian rhythmPatient-derived neuronsMania/hypomaniaExpression of Per2Induced pluripotent stem cellsPER2 protein levelsGlutamatergic neuronsRecurrent episodesBD patientsControl neuronsLithium respondersEffective drugsNeuropsychiatric illnessLithium responsivenessPatient neuronsNeuronsLithium responseProtein levelsRhythm deficitsPrecursor cellsCommon Genetic Variation in Humans Impacts In Vitro Susceptibility to SARS-CoV-2 Infection
Dobrindt K, Hoagland DA, Seah C, Kassim B, O'Shea CP, Murphy A, Iskhakova M, Fernando MB, Powell SK, Deans PJM, Javidfar B, Peter C, Møller R, Uhl SA, Garcia MF, Kimura M, Iwasawa K, Crary JF, Kotton DN, Takebe T, Huckins LM, tenOever BR, Akbarian S, Brennand KJ. Common Genetic Variation in Humans Impacts In Vitro Susceptibility to SARS-CoV-2 Infection. Stem Cell Reports 2021, 16: 505-518. PMID: 33636110, PMCID: PMC7881728, DOI: 10.1016/j.stemcr.2021.02.010.Peer-Reviewed Original ResearchMeSH Keywords3' Untranslated RegionsAdolescentAdultAnimalsCell LineChlorocebus aethiopsClustered Regularly Interspaced Short Palindromic RepeatsCOVID-19FemaleFurinGenetic Predisposition to DiseaseHost-Pathogen InteractionsHumansInduced Pluripotent Stem CellsMaleNeuronsPeptide HydrolasesPolymorphism, Single NucleotideSARS-CoV-2Vero CellsConceptsSARS-CoV-2Clinical complicationsSARS-CoV-2 infectionCommon genetic variationHigh-risk individualsHost genetic variantsSignificant interindividual variabilityNeuron infectionUnderlying comorbiditiesViral loadHealthy individualsViral infectionClinical heterogeneityVitro SusceptibilityEtiologic agentHost responseInterindividual variabilityDiscovery of drugsInfectionHost geneticsHuman induced pluripotent stem cellsSingle nucleotide polymorphismsAntibody repertoireMore diseasesComplications
2020
Integration of CRISPR-engineering and hiPSC-based models of psychiatric genomics
Matos MR, Ho SM, Schrode N, Brennand KJ. Integration of CRISPR-engineering and hiPSC-based models of psychiatric genomics. Molecular And Cellular Neuroscience 2020, 107: 103532. PMID: 32712198, PMCID: PMC7484226, DOI: 10.1016/j.mcn.2020.103532.Peer-Reviewed Original ResearchConceptsPenetrant rare variantsDisease-associated variantsNeuronal cell typesPluripotent stem cellsGenomic engineeringFunctional characterizationComplex geneticsCRISPR engineeringCRISPR technologyIsogenic comparisonsPsychiatric genomicsCell typesGenetic variantsStem cellsIndividual variantsCommon variantsPolygenic disorderRare variantsVariantsComplex interplayGenomicsGenetic riskPleiotropyCRISPRGeneticsInvestigation of Schizophrenia with Human Induced Pluripotent Stem Cells
Powell SK, O’Shea C, Shannon SR, Akbarian S, Brennand KJ. Investigation of Schizophrenia with Human Induced Pluripotent Stem Cells. Advances In Neurobiology 2020, 25: 155-206. PMID: 32578147, PMCID: PMC8033573, DOI: 10.1007/978-3-030-45493-7_6.Peer-Reviewed Original ResearchTranscriptional signatures of participant-derived neural progenitor cells and neurons implicate altered Wnt signaling in Phelan-McDermid syndrome and autism
Breen MS, Browne A, Hoffman GE, Stathopoulos S, Brennand K, Buxbaum JD, Drapeau E. Transcriptional signatures of participant-derived neural progenitor cells and neurons implicate altered Wnt signaling in Phelan-McDermid syndrome and autism. Molecular Autism 2020, 11: 53. PMID: 32560742, PMCID: PMC7304190, DOI: 10.1186/s13229-020-00355-0.Peer-Reviewed Original ResearchMeSH KeywordsAdolescentAdultAutistic DisorderChildChild, PreschoolChromosome DeletionChromosome DisordersChromosomes, Human, Pair 22FemaleGene Expression ProfilingGene Expression RegulationHumansInduced Pluripotent Stem CellsMaleNeural Stem CellsNeuronsReproducibility of ResultsWnt Signaling PathwayConceptsNeural progenitor cellsTranscriptional signatureGene co-expression network analysisHiPSC-NPCsCo-expression network analysisIndependent biological samplesHiPSC-derived neural cellsProgenitor cellsPostsynaptic density genesDistinct transcriptional signaturesGenetic risk lociHuman-induced pluripotent stem cellsPluripotent stem cellsPotassium channel activityProtein translationSpecific neurobiological pathwaysTranscriptional differencesEmbryonic developmentLoss of SHANK3Risk lociHiPSC neuronsMorphological phenotypesWnt pathwayGenesHiPSC clonesCell Type-Specific In Vitro Gene Expression Profiling of Stem Cell-Derived Neural Models
Gregory JA, Hoelzli E, Abdelaal R, Braine C, Cuevas M, Halpern M, Barretto N, Schrode N, Akbalik G, Kang K, Cheng E, Bowles K, Lotz S, Goderie S, Karch CM, Temple S, Goate A, Brennand KJ, Phatnani H. Cell Type-Specific In Vitro Gene Expression Profiling of Stem Cell-Derived Neural Models. Cells 2020, 9: 1406. PMID: 32516938, PMCID: PMC7349756, DOI: 10.3390/cells9061406.Peer-Reviewed Original ResearchConceptsCell type-restricted expressionDisease-associated interactionsGene expression profilingHiPSC-derived motor neuronsHuman-induced pluripotent stem cellsPluripotent stem cellsCell-type specific perturbationsImmortalized cell linesRibosomal proteinsGenomic studiesExpression profilingMolecular mechanismsOff-target RNAMouse tissuesCell typesStem cellsPrimary mouse astrocytesExperimental replicatesCell linesMixed speciesMouse astrocytesExpressionMotor neuronsRiboTagCells