Featured Publications
Modeling gene × environment interactions in PTSD using human neurons reveals diagnosis-specific glucocorticoid-induced gene expression
Seah C, Breen M, Rusielewicz T, Bader H, Xu C, Hunter C, McCarthy B, Deans P, Chattopadhyay M, Goldberg J, Dobariya S, Desarnaud F, Makotkine I, Flory J, Bierer L, Staniskyte M, Noggle S, Huckins L, Paull D, Brennand K, Yehuda R. Modeling gene × environment interactions in PTSD using human neurons reveals diagnosis-specific glucocorticoid-induced gene expression. Nature Neuroscience 2022, 25: 1434-1445. PMID: 36266471, PMCID: PMC9630117, DOI: 10.1038/s41593-022-01161-y.Peer-Reviewed Original ResearchConceptsPost-traumatic stress disorderPeripheral blood mononuclear cellsGlucocorticoid-induced changesGlucocorticoid-induced gene expressionBlood mononuclear cellsIndividual clinical outcomesEnvironmental risk factorsHuman postmortem brainGlucocorticoid hypersensitivityClinical outcomesGlutamatergic neuronsMononuclear cellsRisk factorsHydrocortisone exposureSevere traumaPostmortem brainsHuman neuronsGlucocorticoid responseInduced neuronsStress disorderNeuronsNew therapeuticsGene expressionGene × environment interactionsCombat veteransModelling schizophrenia using human induced pluripotent stem cells
Brennand K, Simone A, Jou J, Gelboin-Burkhart C, Tran N, Sangar S, Li Y, Mu Y, Chen G, Yu D, McCarthy S, Sebat J, Gage F. Modelling schizophrenia using human induced pluripotent stem cells. Nature 2011, 473: 221-225. PMID: 21490598, PMCID: PMC3392969, DOI: 10.1038/nature09915.Peer-Reviewed Original ResearchMeSH KeywordsAdolescentAdultAntipsychotic AgentsCell DifferentiationCells, CulturedCellular ReprogrammingChildDisks Large Homolog 4 ProteinFemaleFibroblastsGene Expression ProfilingGene Expression RegulationHumansIntracellular Signaling Peptides and ProteinsLoxapineMaleMembrane ProteinsModels, BiologicalNeuritesNeuronsPhenotypePluripotent Stem CellsReceptors, GlutamateSchizophreniaYoung Adult
2024
Author Correction: Modeling gene × environment interactions in PTSD using human neurons reveals diagnosis-specific glucocorticoid-induced gene expression
Seah C, Breen M, Rusielewicz T, Bader H, Xu C, Hunter C, McCarthy B, Deans P, Chattopadhyay M, Goldberg J, Dobariya S, Desarnaud F, Makotkine I, Flory J, Bierer L, Staniskyte M, Noggle S, Huckins L, Paull D, Brennand K, Yehuda R. Author Correction: Modeling gene × environment interactions in PTSD using human neurons reveals diagnosis-specific glucocorticoid-induced gene expression. Nature Neuroscience 2024, 1-1. PMID: 39633181, DOI: 10.1038/s41593-024-01854-6.Peer-Reviewed Original ResearchSomatic mosaicism in schizophrenia brains reveals prenatal mutational processes
Maury E, Jones A, Seplyarskiy V, Nguyen T, Rosenbluh C, Bae T, Wang Y, Abyzov A, Khoshkhoo S, Chahine Y, Zhao S, Venkatesh S, Root E, Voloudakis G, Roussos P, Network B, Park P, Akbarian S, Brennand K, Reilly S, Lee E, Sunyaev S, Walsh C, Chess A. Somatic mosaicism in schizophrenia brains reveals prenatal mutational processes. Science 2024, 386: 217-224. PMID: 39388546, PMCID: PMC11490355, DOI: 10.1126/science.adq1456.Peer-Reviewed Original ResearchConceptsTranscription factor binding sitesWhole-genome sequencingOpen chromatinMutational processesSomatic mutationsFactor binding sitesSchizophrenia casesSchizophrenia risk genesSomatic mosaicismSomatic variantsRisk genesG mutationGene expressionGermline mutationsBinding sitesGenesMutationsIncreased somatic mutationsChromatinMosaic somatic mutationsPrenatal neurogenesisContext of schizophreniaBrain neuronsSchizophrenia brainVariantsSingle-cell genomics and regulatory networks for 388 human brains
Emani P, Liu J, Clarke D, Jensen M, Warrell J, Gupta C, Meng R, Lee C, Xu S, Dursun C, Lou S, Chen Y, Chu Z, Galeev T, Hwang A, Li Y, Ni P, Zhou X, Bakken T, Bendl J, Bicks L, Chatterjee T, Cheng L, Cheng Y, Dai Y, Duan Z, Flaherty M, Fullard J, Gancz M, Garrido-Martín D, Gaynor-Gillett S, Grundman J, Hawken N, Henry E, Hoffman G, Huang A, Jiang Y, Jin T, Jorstad N, Kawaguchi R, Khullar S, Liu J, Liu J, Liu S, Ma S, Margolis M, Mazariegos S, Moore J, Moran J, Nguyen E, Phalke N, Pjanic M, Pratt H, Quintero D, Rajagopalan A, Riesenmy T, Shedd N, Shi M, Spector M, Terwilliger R, Travaglini K, Wamsley B, Wang G, Xia Y, Xiao S, Yang A, Zheng S, Gandal M, Lee D, Lein E, Roussos P, Sestan N, Weng Z, White K, Won H, Girgenti M, Zhang J, Wang D, Geschwind D, Gerstein M, Akbarian S, Abyzov A, Ahituv N, Arasappan D, Almagro Armenteros J, Beliveau B, Berretta S, Bharadwaj R, Bhattacharya A, Brennand K, Capauto D, Champagne F, Chatzinakos C, Chen H, Cheng L, Chess A, Chien J, Clement A, Collado-Torres L, Cooper G, Crawford G, Dai R, Daskalakis N, Davila-Velderrain J, Deep-Soboslay A, Deng C, DiPietro C, Dracheva S, Drusinsky S, Duong D, Eagles N, Edelstein J, Galani K, Girdhar K, Goes F, Greenleaf W, Guo H, Guo Q, Hadas Y, Hallmayer J, Han X, Haroutunian V, He C, Hicks S, Ho M, Ho L, Huang Y, Huuki-Myers L, Hyde T, Iatrou A, Inoue F, Jajoo A, Jiang L, Jin P, Jops C, Jourdon A, Kellis M, Kleinman J, Kleopoulos S, Kozlenkov A, Kriegstein A, Kundaje A, Kundu S, Li J, Li M, Lin X, Liu S, Liu C, Loupe J, Lu D, Ma L, Mariani J, Martinowich K, Maynard K, Myers R, Micallef C, Mikhailova T, Ming G, Mohammadi S, Monte E, Montgomery K, Mukamel E, Nairn A, Nemeroff C, Norton S, Nowakowski T, Omberg L, Page S, Park S, Patowary A, Pattni R, Pertea G, Peters M, Pinto D, Pochareddy S, Pollard K, Pollen A, Przytycki P, Purmann C, Qin Z, Qu P, Raj T, Reach S, Reimonn T, Ressler K, Ross D, Rozowsky J, Ruth M, Ruzicka W, Sanders S, Schneider J, Scuderi S, Sebra R, Seyfried N, Shao Z, Shieh A, Shin J, Skarica M, Snijders C, Song H, State M, Stein J, Steyert M, Subburaju S, Sudhof T, Snyder M, Tao R, Therrien K, Tsai L, Urban A, Vaccarino F, van Bakel H, Vo D, Voloudakis G, Wang T, Wang S, Wang Y, Wei Y, Weimer A, Weinberger D, Wen C, Whalen S, Willsey A, Wong W, Wu H, Wu F, Wuchty S, Wylie D, Yap C, Zeng B, Zhang P, Zhang C, Zhang B, Zhang Y, Ziffra R, Zeier Z, Zintel T. Single-cell genomics and regulatory networks for 388 human brains. Science 2024, 384: eadi5199. PMID: 38781369, PMCID: PMC11365579, DOI: 10.1126/science.adi5199.Peer-Reviewed Original ResearchConceptsSingle-cell genomicsSingle-cell expression quantitative trait locusExpression quantitative trait lociDrug targetsQuantitative trait lociPopulation-level variationSingle-cell expressionCell typesDisease-risk genesTrait lociGene familyRegulatory networksGene expressionCell-typeMultiomics datasetsSingle-nucleiGenomeGenesCellular changesHeterogeneous tissuesExpressionCellsChromatinLociMultiomics
2023
Multi-omic profiling of the developing human cerebral cortex at the single-cell level
Zhu K, Bendl J, Rahman S, Vicari J, Coleman C, Clarence T, Latouche O, Tsankova N, Li A, Brennand K, Lee D, Yuan G, Fullard J, Roussos P. Multi-omic profiling of the developing human cerebral cortex at the single-cell level. Science Advances 2023, 9: eadg3754. PMID: 37824614, PMCID: PMC10569714, DOI: 10.1126/sciadv.adg3754.Peer-Reviewed Original ResearchConceptsCis-regulatory elementsChromatin accessibilityGene expressionPseudotime trajectory analysisNeuronal lineage commitmentMulti-omics profilingSingle-cell levelSpecific genetic lociDevelopmental time pointsChromatin structureType-specific domainsLineage determinationCellular complexityLineage commitmentNeuropsychiatric traitsComplex regulationGenetic lociSpatiotemporal activityDynamic changesCritical roleExpressionSpatiotemporal alterationsCell compositionCritical stageNeuropsychiatric diseasesLineage specific 3D genome structure in the adult human brain and neurodevelopmental changes in the chromatin interactome
Rahman S, Dong P, Apontes P, Fernando M, Kosoy R, Townsley K, Girdhar K, Bendl J, Shao Z, Misir R, Tsankova N, Kleopoulos S, Brennand K, Fullard J, Roussos P. Lineage specific 3D genome structure in the adult human brain and neurodevelopmental changes in the chromatin interactome. Nucleic Acids Research 2023, 51: 11142-11161. PMID: 37811875, PMCID: PMC10639075, DOI: 10.1093/nar/gkad798.Peer-Reviewed Original ResearchConceptsChromatin interactomeNeural developmentSpecific gene expressionEnhancer-promoter loopsDistinct cell typesGenome compartmentalizationRepressive compartmentGenome architectureFine-scale changesGenome structureChromatin loopsGWAS lociTAD boundariesTranscriptional inactivationActive promotersGene expressionInteractomeGenomeCell typesComplex organDisease mechanismsHuman brainAdult prefrontal cortexAdult human brainNeurodevelopmental processes56. USING HIPSC-NEURONS AND CRISPR TO UNCOVER NON-ADDITIVE EFFECTS OF SCZ RISK GENES
Deans M, Seah C, Johnson J, García-González J, Townsley K, Cao E, Schrode N, Stahl E, O'Reilly P, Huckins L, Brennand K. 56. USING HIPSC-NEURONS AND CRISPR TO UNCOVER NON-ADDITIVE EFFECTS OF SCZ RISK GENES. European Neuropsychopharmacology 2023, 75: s86. DOI: 10.1016/j.euroneuro.2023.08.162.Peer-Reviewed Original ResearchSCZ risk genesNon-additive effectsRisk genesCombinatorial perturbationsTranscriptomic effectsFunctional roleRisk variantsGene expression changesBulk RNA-seqMultiple functional rolesSynaptic functionHigh-throughput imagingFunctional redundancyTranscriptional regulatorsRNA-seqCRISPR activationCellular phenotypesRNA interferenceEGenesGene expressionExpression changesHiPSC neuronsPolygenic risk scoresGenetic studiesGenesActivity-Dependent Transcriptional Program in NGN2+ Neurons Enriched for Genetic Risk for Brain-Related Disorders
Ma Y, Bendl J, Hartley B, Fullard J, Abdelaal R, Ho S, Kosoy R, Gochman P, Rapoport J, Hoffman G, Brennand K, Roussos P. Activity-Dependent Transcriptional Program in NGN2+ Neurons Enriched for Genetic Risk for Brain-Related Disorders. Biological Psychiatry 2023, 95: 187-198. PMID: 37454787, PMCID: PMC10787819, DOI: 10.1016/j.biopsych.2023.07.003.Peer-Reviewed Original ResearchConceptsTranscriptional programsBrain-related disordersGlutamatergic neuronsGene coexpression network analysisSignificant heritability enrichmentsEnhancer-promoter interactionsCoexpression network analysisDisease-associated genesExpression of genesLarge-scale geneticMultiomics data integrationChromatin accessibilityEpigenomic changesHeritability enrichmentGenetic regulationRegulatory elementsMultiple genesSequence variationGene expressionAxon guidanceGenetic riskPotassium chloride-induced depolarizationActivity-dependent changesDepolarization-induced changesGenes
2022
Rescue of deficits by Brwd1 copy number restoration in the Ts65Dn mouse model of Down syndrome
Fulton S, Wenderski W, Lepack A, Eagle A, Fanutza T, Bastle R, Ramakrishnan A, Hays E, Neal A, Bendl J, Farrelly L, Al-Kachak A, Lyu Y, Cetin B, Chan J, Tran T, Neve R, Roper R, Brennand K, Roussos P, Schimenti J, Friedman A, Shen L, Blitzer R, Robison A, Crabtree G, Maze I. Rescue of deficits by Brwd1 copy number restoration in the Ts65Dn mouse model of Down syndrome. Nature Communications 2022, 13: 6384. PMID: 36289231, PMCID: PMC9606253, DOI: 10.1038/s41467-022-34200-0.Peer-Reviewed Original ResearchConceptsGene expressionChromatin accessibilityChromatin effectorsBAF chromatinGenetic basisTrisomic animalsIPS cellsBRWD1Chromosome 21Down syndromeHSA21Ts65Dn mouse modelCommon chromosomal conditionExpressionChromatinNormal neurodevelopmentChromosomal conditionHippocampal LTPMouse modelMistargetingGenesTrisomic miceCognitive deficitsEffectorsSyndromeA translational genomics approach identifies IL10RB as the top candidate gene target for COVID-19 susceptibility
Voloudakis G, Vicari J, Venkatesh S, Hoffman G, Dobrindt K, Zhang W, Beckmann N, Higgins C, Argyriou S, Jiang S, Hoagland D, Gao L, Corvelo A, Cho K, Lee K, Bian J, Lee J, Iyengar S, Luoh S, Akbarian S, Striker R, Assimes T, Schadt E, Lynch J, Merad M, tenOever B, Charney A, Brennand K, Fullard J, Roussos P. A translational genomics approach identifies IL10RB as the top candidate gene target for COVID-19 susceptibility. Npj Genomic Medicine 2022, 7: 52. PMID: 36064543, PMCID: PMC9441828, DOI: 10.1038/s41525-022-00324-x.Peer-Reviewed Original ResearchCandidate gene targetsGene targetsTranslational genomics approachesHost susceptibilityGenomic approachesGenetic susceptibility variantsGenetic lociDruggable genesGene expressionMolecular pathwaysSusceptibility variantsCOVID-19 susceptibilityGenetic findingsApproach identifiesExpressionCOVID-19 patient bloodCritical next stepGenesLociOverexpressionTargetPathwaySusceptibilityIL10RBRecent effortsA bidirectional competitive interaction between circHomer1 and Homer1b within the orbitofrontal cortex regulates reversal learning
Hafez A, Zimmerman A, Papageorgiou G, Chandrasekaran J, Amoah S, Lin R, Lozano E, Pierotti C, Dell'Orco M, Hartley B, Alural B, Lalonde J, Esposito J, Berretta S, Squassina A, Chillotti C, Voloudakis G, Shao Z, Fullard J, Brennand K, Turecki G, Roussos P, Perlis R, Haggarty S, Perrone-Bizzozero N, Brigman J, Mellios N. A bidirectional competitive interaction between circHomer1 and Homer1b within the orbitofrontal cortex regulates reversal learning. Cell Reports 2022, 38: 110282. PMID: 35045295, PMCID: PMC8809079, DOI: 10.1016/j.celrep.2021.110282.Peer-Reviewed Original ResearchConceptsImportance of circRNAsRNA-binding proteinSynaptic gene expressionCircular RNAsGene expressionOrbitofrontal cortexCompetitive interactionsComplete rescuePsychiatric disordersKnockdownSynaptic expressionMechanistic insightsBrain functionMRNAHomer1bBehavioral flexibilityNeuronal culturesExpressionBiogenesisCircRNAsRNAProteinRegulatesReversal learningDisorders
2021
Using the dCas9-KRAB system to repress gene expression in hiPSC-derived NGN2 neurons
Li A, Cartwright S, Yu A, Ho SM, Schrode N, Deans PJM, Matos MR, Garcia MF, Townsley KG, Zhang B, Brennand KJ. Using the dCas9-KRAB system to repress gene expression in hiPSC-derived NGN2 neurons. STAR Protocols 2021, 2: 100580. PMID: 34151300, PMCID: PMC8188621, DOI: 10.1016/j.xpro.2021.100580.Peer-Reviewed Original ResearchConceptsCRISPR inhibitionGene expressionDCas9-KRAB systemEndogenous gene expressionMultiple target genesGene repressionGene activationTarget genesGene manipulationFusion proteinComplete detailsPluripotent stemExpressionGlutamatergic neuronsRepressionGenesPhenotypicProteinStemNeuronsActivationBrain diseasesInhibitionAnalysis framework and experimental design for evaluating synergy-driving gene expression
Schrode N, Seah C, Deans P, Hoffman G, Brennand K. Analysis framework and experimental design for evaluating synergy-driving gene expression. Nature Protocols 2021, 16: 812-840. PMID: 33432232, PMCID: PMC8609447, DOI: 10.1038/s41596-020-00436-7.Peer-Reviewed Original ResearchConceptsRaw read countsPluripotent stem cell-derived neuronsRNA sequencing experimentsRNA sequencing datasetsStem cell-derived neuronsDifferential expression analysisCell-derived neuronsComplex genetic disorderNon-additive interactionsGenetic risk variantsChemical perturbagensBioinformatics skillsExpression analysisSequencing datasetsGene expressionTranscriptomic effectsSequencing experimentsComputational pipelineRead countsRisk variantsCareful experimental designCombinatorial manipulationGenetic variantsComplex diseasesPerturbation studies
2020
Parsing the Functional Impact of Noncoding Genetic Variants in the Brain Epigenome
Powell SK, O'Shea C, Brennand KJ, Akbarian S. Parsing the Functional Impact of Noncoding Genetic Variants in the Brain Epigenome. Biological Psychiatry 2020, 89: 65-75. PMID: 33131715, PMCID: PMC7718420, DOI: 10.1016/j.biopsych.2020.06.033.Peer-Reviewed Original ResearchConceptsGenetic variantsDisease-associated genetic variationProtein-coding lociRisk-associated genetic variantsGene regulatory lociThousands of variantsFunctional impactRare genetic variantsEpigenomic mappingRegulatory lociBrain epigenomeGenetic variationDNA sequencesNoncoding variantsGene expressionIntegrative analysisEpigenomic architectureMolecular pathwaysPsychiatric geneticsFunctional readoutRisk variantsLociVariantsHighlight findingsEpigenomeSex-Specific Role for the Long Non-coding RNA LINC00473 in Depression
Issler O, van der Zee YY, Ramakrishnan A, Wang J, Tan C, Loh YE, Purushothaman I, Walker DM, Lorsch ZS, Hamilton PJ, Peña CJ, Flaherty E, Hartley BJ, Torres-Berrío A, Parise EM, Kronman H, Duffy JE, Estill MS, Calipari ES, Labonté B, Neve RL, Tamminga CA, Brennand KJ, Dong Y, Shen L, Nestler EJ. Sex-Specific Role for the Long Non-coding RNA LINC00473 in Depression. Neuron 2020, 106: 912-926.e5. PMID: 32304628, PMCID: PMC7305959, DOI: 10.1016/j.neuron.2020.03.023.Peer-Reviewed Original ResearchConceptsSex-specific phenotypesLong non-coding RNAsNon-coding RNAsStress resilienceHuman neuron-like cellsRegulatory transcriptsSex-specific patternsSex-specific roleNeuron-like cellsGene expressionFemale miceLong NonViral-mediated gene transferGene transferLINC00473Prefrontal cortexSynaptic functionRate of menPhenotypeCommon disorderPFC neuronsDepressed femalesDepressed humansFemale depressionComplex regionA psychiatric disease-related circular RNA controls synaptic gene expression and cognition
Zimmerman AJ, Hafez AK, Amoah SK, Rodriguez BA, Dell’Orco M, Lozano E, Hartley BJ, Alural B, Lalonde J, Chander P, Webster MJ, Perlis RH, Brennand KJ, Haggarty SJ, Weick J, Perrone-Bizzozero N, Brigman JL, Mellios N. A psychiatric disease-related circular RNA controls synaptic gene expression and cognition. Molecular Psychiatry 2020, 25: 2712-2727. PMID: 31988434, PMCID: PMC7577899, DOI: 10.1038/s41380-020-0653-4.Peer-Reviewed Original ResearchConceptsSynaptic gene expressionCircular RNAsGene expressionAlternative mRNA transcriptsDisease-associated circRNAsHomolog 1Neuronal RNAMRNA transcriptsRNASynaptic expressionAge of onsetMammalian brainCircRNAsPotential involvementDorsolateral prefrontal cortexOrbitofrontal cortexBipolar disorderPrefrontal cortexKnockdownExpressionFrontal cortexSynaptic plasticityNeuronal culturesPsychiatric diseasesMouse orbitofrontal cortex
2019
CRISPR-based functional evaluation of schizophrenia risk variants
Rajarajan P, Flaherty E, Akbarian S, Brennand KJ. CRISPR-based functional evaluation of schizophrenia risk variants. Schizophrenia Research 2019, 217: 26-36. PMID: 31277978, PMCID: PMC6939156, DOI: 10.1016/j.schres.2019.06.017.Peer-Reviewed Original ResearchConceptsSchizophrenia-associated variantsPluripotent stem cellsCRISPR genome engineeringSchizophrenia risk variantsCellular functionsGenome engineeringGenomic studiesSchizophrenia lociList of variantsGene expressionPatient-specific humanGenotype dataRisk variantsStem cellsFunctional impactCommon variantsCRISPRPost-mortem brain tissueRecent findingsVariantsNeuropsychiatric diseasesPoint of convergenceGenetic riskLociSpecific effects
2018
Landscape of Conditional eQTL in Dorsolateral Prefrontal Cortex and Co-localization with Schizophrenia GWAS
Dobbyn A, Huckins L, Boocock J, Sloofman L, Glicksberg B, Giambartolomei C, Hoffman G, Perumal T, Girdhar K, Jiang Y, Raj T, Ruderfer D, Kramer R, Pinto D, Akbarian S, Roussos P, Domenici E, Devlin B, Sklar P, Stahl E, Sieberts S, Sklar P, Buxbaum J, Devlin B, Lewis D, Gur R, Hahn C, Hirai K, Toyoshiba H, Domenici E, Essioux L, Mangravite L, Peters M, Lehner T, Lipska B, Cicek A, Lu C, Roeder K, Xie L, Talbot K, Hemby S, Essioux L, Browne A, Chess A, Topol A, Charney A, Dobbyn A, Readhead B, Zhang B, Pinto D, Bennett D, Kavanagh D, Ruderfer D, Stahl E, Schadt E, Hoffman G, Shah H, Zhu J, Johnson J, Fullard J, Dudley J, Girdhar K, Brennand K, Sloofman L, Huckins L, Fromer M, Mahajan M, Roussos P, Akbarian S, Purcell S, Hamamsy T, Raj T, Haroutunian V, Wang Y, Gümüş Z, Senthil G, Kramer R, Logsdon B, Derry J, Dang K, Sieberts S, Perumal T, Visintainer R, Shinobu L, Sullivan P, Klei L. Landscape of Conditional eQTL in Dorsolateral Prefrontal Cortex and Co-localization with Schizophrenia GWAS. American Journal Of Human Genetics 2018, 102: 1169-1184. PMID: 29805045, PMCID: PMC5993513, DOI: 10.1016/j.ajhg.2018.04.011.Peer-Reviewed Original ResearchConceptsExpression quantitative trait lociConditional expression quantitative trait lociCommonMind ConsortiumEQTL signalsGenome-wide association study (GWAS) lociSchizophrenia GWASContext-specific regulationQuantitative trait lociCo-localization analysisGene expression levelsGWAS associationsNovel genesTrait lociStudy lociCausal genesEQTL dataFine mappingGenomic featuresGWAS statisticsGene expressionGenesGWASLociExpression levelsHuman brain samples
2017
Mapping regulatory variants in hiPSC models
Hoffman GE, Brennand KJ. Mapping regulatory variants in hiPSC models. Nature Genetics 2017, 50: 1-2. PMID: 29273803, DOI: 10.1038/s41588-017-0017-4.Peer-Reviewed Original Research