2020
A general-purpose Monte Carlo particle transport code based on inverse transform sampling for radiotherapy dose calculation
Liang Y, Muhammad W, Hart GR, Nartowt BJ, Chen ZJ, Yu JB, Roberts KB, Duncan JS, Deng J. A general-purpose Monte Carlo particle transport code based on inverse transform sampling for radiotherapy dose calculation. Scientific Reports 2020, 10: 9808. PMID: 32555530, PMCID: PMC7300009, DOI: 10.1038/s41598-020-66844-7.Peer-Reviewed Original ResearchConceptsPhoton transportBoundary crossing algorithmMonte Carlo particle transport codeMonte Carlo methodTransport simulationsAcceptance-rejection samplingRadiotherapy dose calculationsPhoto-electric effectParticle transport codeEGSnrc simulationsCarlo methodBremsstrahlung eventsInelastic scatteringPair productionRayleigh scatteringThread divergenceMC simulationsTransport codeMC codeHistory schemeParticle transportCrossing algorithmInverseElectron transportSimulation accuracy
2018
Monte Carlo dosimetry modeling of focused kV x‐ray radiotherapy of eye diseases with potential nanoparticle dose enhancement
Yan H, Ma X, Sun W, Mendez S, Stryker S, Starr‐Baier S, Delliturri G, Zhu D, Nath R, Chen Z, Roberts K, MacDonald CA, Liu W. Monte Carlo dosimetry modeling of focused kV x‐ray radiotherapy of eye diseases with potential nanoparticle dose enhancement. Medical Physics 2018, 45: 4720-4733. PMID: 30133705, DOI: 10.1002/mp.13144.Peer-Reviewed Original ResearchConceptsX-ray beamMC simulation programEye plaque treatmentCentral axis depth doseMC simulationsDose distributionBeam focusingEye Physics plaquesPhantom irradiationDose enhancementEnergy spectrumDepth doseLens modelingDosimetry modelingPhotoelectric absorptionKV rangeKV X-ray beamsBeamEBT3 filmSimulation programEnergy regimeModelingX-ray techniquesHalf maximumMore flexibility
2016
Consensus Report From the Stockholm Pediatric Proton Therapy Conference
Indelicato DJ, Merchant T, Laperriere N, Lassen Y, Vennarini S, Wolden S, Hartsell W, Pankuch M, Brandal P, Law CC, Taylor R, Laskar S, Okcu MF, Bouffet E, Mandeville H, Björk-Eriksson T, Nilsson K, Nyström H, Constine LS, Story M, Timmermann B, Roberts K, Kortmann RD. Consensus Report From the Stockholm Pediatric Proton Therapy Conference. International Journal Of Radiation Oncology • Biology • Physics 2016, 96: 387-392. PMID: 27598806, DOI: 10.1016/j.ijrobp.2016.06.2446.Peer-Reviewed Original Research
2015
A report of metachronous orbital involvement by IgG4 disease treated successfully with low-dose radiation therapy
Rutter CE, Mancini BR, Roberts KB. A report of metachronous orbital involvement by IgG4 disease treated successfully with low-dose radiation therapy. Practical Radiation Oncology 2015, 6: 74-77. PMID: 26577005, DOI: 10.1016/j.prro.2015.09.007.Peer-Reviewed Original Research
2011
Kilovoltage Imaging Doses in the Radiotherapy of Pediatric Cancer Patients
Deng J, Chen Z, Roberts KB, Nath R. Kilovoltage Imaging Doses in the Radiotherapy of Pediatric Cancer Patients. International Journal Of Radiation Oncology • Biology • Physics 2011, 82: 1680-1688. PMID: 21477943, DOI: 10.1016/j.ijrobp.2011.01.062.Peer-Reviewed Original ResearchConceptsPediatric cancer patientsCancer patientsTesticular shieldingSpinal cordKilovoltage cone-beamCBCT dosesMean dosesClinical conditionsDose reductionLarge dosesFemoral headPatientsCBCT scansCone beamDosesFull-fan modeOptical nerveCBCT fieldCordDose increaseImaging dosesScanning protocolOARsRadiotherapyHalf-fan mode
2003
Brachytherapy for in-stent restenosis in general interventional practice A single institution's experience using four radiation devices
Singh HS, Roberts KB, Yue N, Nath R, Song GH, Azimi N, Pfau S. Brachytherapy for in-stent restenosis in general interventional practice A single institution's experience using four radiation devices. Cardiovascular Revascularization Medicine 2003, 4: 126-132. PMID: 14984712, DOI: 10.1016/s1522-1865(03)00183-5.Peer-Reviewed Original ResearchMeSH KeywordsAdultAgedAged, 80 and overAngioplasty, Balloon, CoronaryBlood Vessel Prosthesis ImplantationBrachytherapyConnecticutCoronary AngiographyCoronary Artery BypassCoronary RestenosisCoronary StenosisEquipment DesignFamily PracticeFemaleFollow-Up StudiesHospital MortalityHumansMaleMiddle AgedRadiation DosageReoperationRetrospective StudiesStentsTreatment OutcomeConceptsMajor adverse cardiac eventsStent restenosisAverage treatment ageEffectiveness of brachytherapyAdverse cardiac eventsSingle institution experienceMinimal lumen diameterRandomized clinical trialsLesion-specific characteristicsSpectrum of patientsMACE rateHospital deathCardiac eventsRenal failureUnstable anginaClinical outcomesCoronary lesionsTreatment failureInstitution experienceFrequent presentationInterventional therapyClinical trialsGeneral populationInterventional practicePatients
2000
Dosimetric penumbra effects in catheter-based intravascular brachytherapy using a centered photon or beta line source.
Yue N, Nath R, Roberts K. Dosimetric penumbra effects in catheter-based intravascular brachytherapy using a centered photon or beta line source. Cardiovascular Revascularization Medicine 2000, 2: 32-8. PMID: 11229060.Peer-Reviewed Original ResearchMeSH KeywordsBrachytherapyConstriction, PathologicHumansMonte Carlo MethodRadiation DosageRadiometryVascular DiseasesConceptsLongitudinal dose uniformityCatheter-based intravascular brachytherapyRate kernelLine sourceCylindrical blood vesselPenumbra effectMonte Carlo simulationsBlood vesselsMargin lengthRadiation transportCarlo simulationsPhoton emittersEdge effectsRatio of doseDose distributionIntravascular brachytherapySource lengthRadial depthLength LRadioactive sourcesLinear sourceFormalismPhoton sourcesPoints of interestCorresponding radionuclide